

Boris Ivanovic | NVIDIA Autonomous Vehicles Research Group AVIATE Seminar | April 19th, 2024

Revolutionizing AV Development with Foundation Models

Where is the AV industry today?

- Advanced driver assistance systems (ADAS) in the hands of consumers
- Driverless operations in certain operational design domains (ODDs)

Powered by "judicious incorporation" of ML/AI into the AV stack:

Safety is paramount

What do we need for tomorrow?

There's still a "long tail" of anything/everything that could possibly happen out there!

How can we generalize to the unseen?

...???

How do Humans Navigate the "Long Tail"? By leveraging strong contextual understanding and common-sense reasoning

<u>Generalist Experience</u> Lifetime of interacting with the world beyond driving

AV Fleet (Many) lifetimes of driving data: costly to acquire, yet still incomplete

A next generation of AVs equipped to handle new domains + the long tail?

How can we access this generalist **experience for AV applications?**

Providing AVs with Lifetimes of Generalist Experience

Offline Processes

Autolabeling Sensor and Traffic Simulation Scenario Generation

. . .

Long-Tail Generalization via Common-Sense Reasoning

Safety Frameworks

On-Vehicle AV Stack

FM-empowered E2E Stacks In-Cabin Driving Assistance Interactive Vehicle Interface

. . .

Building AV Foundation Models

CRAWL

Multimodal Foundation Models Learning universal representations in a shared embedding space

Multimodal Foundation Models Learning universal representations in a shared embedding space

Encoders into Shared Latent Space

What is an "encoder"?

Neural network that extracts features from raw data

Multimodal Foundation Models Learning universal representations in a shared embedding space

Encoders into Shared Latent Space

Multimodal Input Tokens

What is a "token"?

- Semantic unit of language,
- Image patch embedding,
- Video/lidar/radar/etc. sensor embedding,
- Vehicle state, action, trajectory embedding,
- Latent scene representation
- ... anything!

"Unit of information" from arbitrary modality

Example: pretrained, transformerbased multimodal language models

Multimodal Foundation Models Learning universal representations in a shared embedding space

What is a "backbone"?

- Neural network that processes input tokens and generates output tokens.
- In this example, an existing LLM is used to process tokens autoregressively.

Example: pretrained, transformerbased multimodal language models

Multimodal Foundation Models Learning universal representations in a shared embedding space

Encoders into Shared Latent Space

What is a "decoder"?

- Converts output tokens to modalities of interest.
- E.g., bounding boxes, trajectories, maps, images, videos, etc.

How do we Build an AV FM?

Desired capabilities inform choice of data, model, and training tasks

Li, Wang, Mao, Ivanovic, Veer, Leung, Pavone, Driving Everywhere with Large Language Model Policy Adaptation, CVPR 2024 Cho, Ivanovic, Cao, Wang, Schmerling, Weng, Li, You, Kraehenbuehl, Wang, Pavone, Language-Image Models with 3D Understanding (submitted)

Multi-Modal Large Language Models

Video Generation Models

Sora DALL·E3

Unsupervised Task (Pretraining)

Image / Video Generation

Supervised Task (Finetuning)

Grounding

Tracking

Planning

Case Study: Video Generation via Tokens

- 1. General image and video generation on internet data
- 2. Multi-camera video generation with AV data
- 3. Traffic simulation, simulating bounding box trajectories conditioned on ego actions
- 4. Sensor simulation, simulating camera images and LiDAR returns from bounding boxes

Cross-Functional VFM-AV Team led by Jonah Philion

Architecture and Potential Training Tasks

 $\bullet \quad \bullet \quad \bullet$

Case Study: Multi-Camera Video Generation via Tokens

Cross-Functional VFM-AV Team led by Jonah Philion

Using AV Foundation Models

How Can We Use AV FMs?

How Can We Use AV FMs?

Imbuing World Representations with Internet-Scale Priors

General Semantic Features Common-Sense Reasoning

World Representations

Dynamic Driving Scene Reconstruction and Representation

Yang, Ivanovic, Litany, Weng, Kim, Li, Che, Xu, Fidler, Pavone, Wang, EmerNeRF: Emergent Spatial-Temporal Scene Decomposition via Self-Supervision, ICLR 2024 https://emernerf.github.io/

Static-Dynamic Decomposition

Dynamic Driving Scene Reconstruction and Representation

Ground Truth Cameras

Yang, Ivanovic, Litany, Weng, Kim, Li, Che, Xu, Fidler, Pavone, Wang, EmerNeRF: Emergent Spatial-Temporal Scene Decomposition via Self-Supervision, ICLR 2024 https://emernerf.github.io/ Drive Labs: <u>youtube.com/watch?v=4Ort_bdTQlk</u>

Static-Dynamic Decomposition

General Semantic Representations with Foundation Model Features Autolabeling

Yang, Ivanovic, Litany, Weng, Kim, Li, Che, Xu, Fidler, Pavone, Wang, EmerNeRF: Emergent Spatial-Temporal Scene Decomposition via Self-Supervision, ICLR 2024 https://emernerf.github.io/

Sensor Data

Sensor Data

and

Foundation Model Latent Features

Neural Rendering for High-Fidelity Sensor Simulation

GT

GT

Original Camera Log

Rendered Camera Log

Yang, Ivanovic, Litany, Weng, Kim, Li, Che, Xu, Fidler, Pavone, Wang, EmerNeRF: Emergent Spatial-Temporal Scene Decomposition via Self-Supervision, ICLR 2024 https://emernerf.github.io/

LiDAR Simulation

Xu, Chen, Ivanovic, Pavone, BITS: Bi-level Imitation for Traffic Simulation, ICRA 2023 Zhong, Rempe, Xu, Chen, Veer, Che, Ray, Pavone, Guided Conditional Diffusion for Controllable Traffic Simulation, ICRA 2023 Tan, Ivanovic, Weng, Pavone, Kraehenbuehl, Language Conditioned Traffic Generation, CoRL 2023 Zhong, Rempe, Chen, Ivanovic, Cao, Xu, Pavone, Ray, Language-Guided Traffic Simulation via Scene-Level Diffusion, CoRL 2023 (Oral) Chen, Tonkens, Pavone, Categorical Traffic Transformer: Interpretable and Diverse Behavior Prediction with Tokenized Latent, arXiv 2023 Ding, Cao, Zhao, Xiao, Pavone, RealGen: Retrieval Augmented Generation for Controllable Traffic Scenarios, arXiv 2023

Accelerating Traffic Simulation with Foundation Models

Accelerating Traffic Simulation with Foundation Models

Input

"make the car in front turn left" "remove all the horizontal cars" "add more cars on the left"

"Vehicle 1 did not notice that traffic was slowing down and struck the rear of Vehicle 2." *NHTSA CIREN #154*

Tan, Ivanovic, Weng, Pavone, Krähenbühl, Language Conditioned Traffic Generation, CoRL 2023 https://ariostgx.github.io/lctgen/

Transforming text to simulation

"Vehicle 1 slowed down to turn left into a private driveway. Vehicle 2 tried to pass in the oncoming lane, striking Vehicle 1." NHTSA CIREN #806

nore cars on the left" "speed up same-direction cars"

"As Vehicle 1 was passing through the intersection, Vehicle 2 turned left, striking Vehicle 1." NHTSA CIREN #324

Accelerating Traffic Simulation with Foundation Models

Text Description

As Vehicle 1 approached the intersection, its driver did not notice the vehicles stopped ahead at the traffic light. The traffic signal turned green and Vehicle 2 began to slowly move forward. The frontal plane of Vehicle 1 struck the rear plane of Vehicle 2 ...

Tan, Ivanovic, Weng, Pavone, Krähenbühl, Language Conditioned Traffic Generation, CoRL 2023 https://ariostgx.github.io/lctgen/

Transforming text to simulation

Structured Representation

Output:

Summary: V1 approaches an intersection and does not notice V2 ahead... **Explanation**: [V1] - Because V1 is moving , we assume V1's initial speed is 10 m/s (index 4). V1 keeps going straight, so its actions are all 4 (keep speed). [V2] - As V1 is moving straight and hits V2 from behind, V2 is in front of V1....

- 'V1': [-1, 0, 0, 4, 4, 4, 4, 4] - 'V2': [3, 8, 2, 0, 4, 4, 4, 4] - 'Map': [2, 2, 2, 2, 8, 1]

Camera Log of the Scenario

Rendered Camera in New Scenario

Simultaneous Sensor and Traffic Simulation

How Can We Use AV FMs?

A Language Agent for Autonomous Driving

Large Language Models as an Agent

Mao*, Ye*, Qian, Pavone, Wang, A Language Agent for Autonomous Driving. Submitted. https://usc-gvl.github.io/Agent-Driver/

Can FMs Drive?

AgentDriver and Dolphins as initial explorations

Ma, Cao, Sun, Pavone, Xiao, *Dolphins: Multimodal Language Model for Driving*. Submitted. <u>https://vlm-driver.github.io/</u>

Perfomance on BDD-X

Can LLMs Drive *Practically*? Potentially!

Sole Image: shi - AWQ-Chat + Image: shi - Image: shi - Image: shi - <th>l: orin] - Visual Studio Code</th> <th></th> <th>. ∢</th> <th>=</th> <th></th> <th>Welco</th> <th>ome - o</th>	l: orin] - Visual Studio Code		. ∢	=		Welco	ome - o
<pre>(AWQ-Chat) orine%./llama2_awg_int4 Loading checkpoint: 100% USER: How do you compare MIT and Hary ASSISTANT: Co Co So So So So So So So So So So So So S</pre>	SOLE	▷ sh - AWQ-Chat + ~ 🔟 🛍 … ~ ×	۲ ک	PROBLEMS C	OUTPUT PORTS	TERMINAL	DEBU
(2) (2) (3) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4		2/2 [00:08<00:00, 4.32s/it]		• (AWQ-Chat) Loading che USER: How d ASSISTANT:	orin0% ./llama ckpoint: 100% o you compare	a2_awq_int4 MIT and Ha	rvard
			(S) (S) (S) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C				

Lin, Tang, Tang, Yang, Dang, Han, Activation-aware Weight Quantization for LLM Compression and Acceleration, arXiv 2023

Xiao, Tian, Chen, Han, Lewis, Efficient Streaming Language Models with Attention Sinks, arXiv 2023

rin [SSH: orin] - Visual Studio Code			×
G CONSOLE	≥ sh - AWQ-Chat + ~ □ 🛍	···· ~	×
b		1 66-13+	1
?	1/1 [00:01<00:00,	1.665/10	
		5	()

On System Architecting

Differentiable & Modular AV Architecture

Choice of modules

3D semantic occupancy network OccNet (ICCV '23)

BEV occupancy flow & trajectory prediction UniAD (CVPR '23 best paper)

Weng, Ivanovic, Wang, Wang, Pavone, PARA-Drive: Parallelized Architecture for Real-time Autonomous Driving, CVPR 2024

The Design Space is Extremely Large!

Differentiable & Modular AV Architecture

Coupled through module placement! **Compounded complexity**

Building A Flexible Computational Driving Graph to Explore the Design Space

Weng, Ivanovic, Wang, Wang, Pavone, PARA-Drive: Parallelized Architecture for Real-time Autonomous Driving, CVPR 2024

• Necessity: Which tasks/modules are essential for driving? Is there redundancy?

• Placement: How should modules be arranged? Sequentially? In Parallel? Hybrid?

• Representation: Should we use latent features (e.g., Transformer queries?), interpretable outputs (e.g., bounding boxes or BEV outputs), or a combination of both?

Fully-Connected Computational Driving Graph

PARA-Drive: Parallelized Architecture for Real-time Autonomous Driving

Incorporating these insights yields a new state-of-the-art parallel architecture for end-to-end AV

Weng, Ivanovic, Wang, Wang, Pavone, PARA-Drive: Parallelized Architecture for Real-time Autonomous Driving, CVPR 2024

• PARA-Drive can run **4x** faster than state-of-the-art academic models (UniAD, CVPR 2023 Best Paper), while outperforming them in open-loop planning metrics and auxiliary tasks (e.g., mapping)

	e0		1	p=1.0
	-0			t=6s
t	-0			t=3s
1				
-	-			
		1		
1.1	*	1		
-17	2.07	4.	20	
		1	1	
		0	130.	
at to			and the	
ANGAL.	in .			
	S			
5		1	K	
1.1	·		R.	
Sel.				
25	· · ·			
1.1	11			
	1			
1	1		2.7	
	4% [· 3		15
	1	22		
	1			i de l
	E.			di la
3el		+ 3,3	- 4	1
a. 1			1 1	
2	1. 1		: 7	
			1.7	
		1		
÷			de.	
P	=0		1	p=1.0
0	-0			t=6s
5	-0			t=3s

. h		
01		
and the second second		
Judde - 18.		
· · · · ·		
5.94 J		
	25	
	3	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	36° -	
1. S. 1965		
S. S. A		
201		
S 1	* * * C	
12		
Sec. 1. 18		
Den ser den se		
· /-	4	
S. 199		
	-0	
4	· •	
		311
- 10		
	W * -	
	100	
		1.4
dist is		4.
240.00		
	. 1	18
and the second second	*	1
		-
At. 4 1	1. 1. A. S.	
16 T 1	·*** /7	
1 1 1		
	/	
	- /	
	1 6.	
	15	
p=0		p=1.0
	1.1.1.1.18	-
t=0		t=6s
		1 1010

• A parallel architecture with a shared backbone serves as a strong general archetype • Flexible with respect to input/output representations (which can differ at train and test time) Supports training with multiple tasks (to shape internal features)

• A parallel architecture with a shared backbone serves as a strong general archetype. • Flexible with respect to input/output representations (which can differ at train and test time) Supports training with multiple tasks (to shape internal features)

• A parallel architecture with a shared backbone serves as a strong general archetype. • Flexible with respect to input/output representations (which can differ at train and test time) Supports training with multiple tasks (to shape internal features)

• A parallel architecture with a shared backbone serves as a strong general archetype. • Flexible with respect to input/output representations (which can differ at train and test time) Supports training with multiple tasks (to shape internal features)

Tian, Li, Chen, Weng, Wang, Ivanovic, Pavone, TOKEN: A Multi-modal Large Language Model with Tokenized Object-level Knowledge for Autonomous Driving (in preparation)

Tian, Li, Chen, Weng, Wang, Ivanovic, Pavone, TOKEN: A Multi-modal Large Language Model with Tokenized Object-level Knowledge for Autonomous Driving (in preparation)

Conclusions

- fast-slow reasoning pipelines)

Key Takeaways

• FMs bring access to new data and capabilities that provide a quantum leap in long-tail generalization for AVs • FMs have potential to empower the full AV program, from offline processes all the way to the online AV stack • VFMs and MM-LLMs are emerging as two prominent FMs for AV - opportunities abound wrt specialization and unification • FMs can be used to replace existing pipelines as well as to improve them FM now make closed-loop sim eval and training arguably within reach • A parallel architecture provides key opportunities to embed FMs within a stack, while avoiding main drawbacks (e.g., enabling

 FMs are not black magic: strategies exist to confidently deploy them... • ...at the same time, FMs provide key opportunities to *improve* the safety of AVs (e.g., via semantic run-time monitors)

More Information / Links to Papers

Autonomous Vehicle Research Group + VFM-AV Team

- research.nvidia.com/labs/avg
- github.com/NVlabs

