
Chuchu Fan
Assistant Professor of AeroAstro and LIDS

REALM Lab: REliable Autonomous systems Lab at MIT
chuchu@mit.edu

Joint work with Charles Dawson

Presented at the NASA ULI AVIATE Seminars

Efficiently predicting and repairing failure 
modes via sampling 

and updates on the GUAM Python version



Failure prediction and repair
Optimization

Testing

How can we predict likely failures prior to 
deployment?1

How can we understand the causes of 
those failures?2

What can we do to mitigate those 
failures?3

Our framework answers the following questions

Current applications

Problem formulation: argmin
𝑥

max
𝑦

𝐽 ∘ 𝑆(𝑥, 𝑦)



argmin
𝑥

max
𝑦

𝐽 ∘ 𝑆(𝑥, 𝑦)

To solve this problem, we need to find a generalized Nash equilibrium between the 
optimizer and the adversary:

𝑥∗ = argmin𝑥𝔼𝑦 𝐽 ∘ 𝑆 𝑥, 𝜙

𝑦∗ = argmax𝑥𝐽 ∘ 𝑆 𝑥, 𝜙

3

This avoids the risk of 
“overfitting” to a 
particular value of 𝑦∗. We can use the values of 𝑦∗ found during 

successive iterations as high-quality 
counterexamples to guide the optimization of 𝑥.

Failure prediction and repair



Prior work: prediction

Model-based verification Black-box verification

- SAT/SMT
- Reachability
- Hamilton-Jacobi

- RL
- Bayesian optimization
- Importance sampling

✅ Formal guarantees

❌ Symbolic model required

❌ Computationally expensive

🆗 Few guarantees (statistical)

✅Model-free

❌ Computationally expensive

Adversarial training

- Zero-sum games
- Domain randomization

❌ No guarantees

🆗Model need not be symbolic

✅ Computationally cheap

repair

Ideally, we’d like a method that…

- Explores without getting stuck in local minima,

- Runs faster than black-box verification,

- Doesn’t require a symbolic model,

- Combines prediction and repair.



Images by macrovector and svstudioart on Freepik

Existing methods overfit to easy test cases

Leads to false confidence

Instead, our method prioritizes diversity

Sampling-based algorithms can help!  

Test-case diversity leads to safer operations

Fewer surprises



Dilemma in failure prediction

Option 1: check all 
possible failures

Option 2: check only 
worst-case failures

Takes too much time

How do we find those 
worst-case failures?



🧑💻

A common approach to secure dispatch

😈

Optimization tug-of-war with the adversary



🧑💻

A common approach to secure dispatch - what can go wrong?

😈
✅

You’ve successfully mitigated the worst failure found by the adversary…



🧑💻 👿

You’ve successfully mitigated the worst failure found by the adversary…

But what if the adversary didn’t find the true worst case?

💧 💧

A common approach to secure dispatch - what can go wrong?



Looking for the worst-case can lead to dead-ends

👿



Adversarial optimization converges in theory…
but it misses many failures in practice.

17% of failures are worse than the 
predicted worst case



Images by macrovector and svstudioart on Freepik

Existing methods overfit to easy test cases

Leads to false confidence

Instead, our method prioritizes diversity

Sampling-based algorithms can help!  

Test-case diversity leads to safer operations

Fewer surprises



Inspiration from computational statistics: sampling

What’s more representative?

The mean?

Mean + standard deviation?

Samples from the distribution!

- Can represent any distribution
- Tells us about risk
- Covers extreme events



Looking for the worst-case = looking for local minima
Sampling (instead of optimizing) gives the full picture
Looking for the worst-case = looking for local minima



How to find diverse failure modes?

15

Step 1: balance failure likelihood with severity

Step 2: instead of optimizing, sample y from the posterior:

(Risk-adjusted severity)



16

py, 0(y) = mixture model with 5% chance of failure for each line

Sampling test cases leads to more diversity



Failure repair as Bayesian inference

17

Failure mode repair is also a sampling problem

expectation over predicted failures Regularize using prior distribution for x

“Distribution of good designs given expected failure modes”



Images by macrovector and svstudioart on Freepik

Existing methods overfit to easy test cases

Leads to false confidence

Instead, our method prioritizes diversity

Sampling-based algorithms can help!  

Test-case diversity leads to safer operations

Fewer surprises



Diverse test cases yield better coverage of possible failures

None of 106 random trials exceed 
predicted worst case



Dispatch using our test cases leads to 10x fewer outages



Sequential Adversarial Inference

21

Predict a diverse set of failure 
modes for the current design

Use failure modes to inform 
further design iteration

Loop until design performance has converged



Images by macrovector and svstudioart on Freepik

Existing methods overfit to easy test cases

Leads to false confidence

Instead, our method prioritizes diversity

Sampling-based algorithms can help!  

Test-case diversity leads to safer operations

Fewer surprises



A uniform framework that works across different applications

Featured on MIT News

dim x = 120, dim y = 200 

dim x = 100, dim y = 1280
dim x = 98, dim y = 80 dim x = 1800, dim y = 5

dim x = 1200, dim y = 7

dim x = 318, dim y = 6



Example on satellite rendezvous 

Left: the chaser satellite must eventually reach the target while respecting a 
maximum speed constraint in the region immediately around the target. Right: the 
chaser must still reach the target and obey the speed limit, but it must also loiter in 
an observation region for some minimum time before approaching. 24



Example on satellite rendezvous 

𝜑1 = 𝜑reach ∧ 𝜑speed−limit, 𝜑2 = 𝜑reach ∧ 𝜑speed−limit ∧ 𝜑loiter

𝜑reach = 𝐅 𝑟 ≤ 0.1 , 𝜑speed−limit = 𝐆 𝑟 ≤ 2 ⇒ 𝑣 ≤ 0.1 ,

𝜑loiter = 𝐅𝐆 0,𝑇𝑜𝑏𝑠 2 ≤ 𝑟 ∧ 𝑟 ≤ 3
25



Example on satellite rendezvous 

Design parameters 𝑥 include both state/input waypoints along a planned trajectory 
and the feedback gains used to track that trajectory, and the exogenous parameters 𝑦 
represent bounded uncertainty in the initial states of the chaser (relative position, 
relative velocity). 26



Example on satellite rendezvous 

27Our algorithm finds the optimized trajectories for both missions.



Examples of design from STL

28



A uniform framework that works across different applications



A uniform framework that works across different applications

Convergence rates of gradient-based (orange) and gradient-free (blue) samplers 





Case studies with perception-based control







A python (differentiable) implementation

A visualizer

GUAM - JAX 
Version 

Translation

35



Implementation and testing

➢Translation example: (2) Hover to Transition Timeseries

➢Some important implementation details including:

• Execution order

• Integration function

• Function without direct python equivalent

➢Debugging and result comparison

36



Execution order

➢ Based on the execution order 
information we found in 
‘Information Overlays’, we 
mapped our JAX pipeline with 
exact order.

37



Integration

➢We used scipy.integrate.solve_ivp for integration.

➢Since GUAM Simulink is using ode3, which is Bogacki-Shampine, we use extensisq, 
a package that extends scipy.integrate that supports Bogacki-Shampine.

 

38

https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.solve_ivp.html
https://github.com/WRKampi/extensisq


Function without direct python equivalent

➢ The mkpp, unmkpp, and ppval functions in MATLAB do 
not have exact python equivalent, so we created 
translation by digitizing data with given breaks and 
calculating piecewise polynomial manually.

➢ Similarly, we also created functions to match Simulink 
blocks such as matrix interpolation.

39



Debugging

➢ We started debugging and testing for every single function by enabling ‘Toggle port 
value labels’ and step forward step by step to check if values match.

40



Result comparison

➢ We compared our result with SimOut struct output of Simulink model. 

➢ Here is a result comparison for SimOut.Vehicle.EOM.InertialData.Pos_bii field:  

41
GUAM JAXGUAM Simulink



Trajectories of a learning-based controller on the JAX GUAM


	Slide 1
	Slide 2: Failure prediction and repair
	Slide 3: Failure prediction and repair
	Slide 4: Prior work: prediction
	Slide 5
	Slide 6: Dilemma in failure prediction
	Slide 7: A common approach to secure dispatch
	Slide 8: A common approach to secure dispatch - what can go wrong?
	Slide 9: A common approach to secure dispatch - what can go wrong?
	Slide 10: Looking for the worst-case can lead to dead-ends
	Slide 11: Adversarial optimization converges in theory… but it misses many failures in practice.
	Slide 12
	Slide 13: Inspiration from computational statistics: sampling
	Slide 14: Looking for the worst-case = looking for local minima
	Slide 15: How to find diverse failure modes?
	Slide 16: Sampling test cases leads to more diversity
	Slide 17: Failure repair as Bayesian inference
	Slide 18
	Slide 19: Diverse test cases yield better coverage of possible failures
	Slide 20: Dispatch using our test cases leads to 10x fewer outages
	Slide 21: Sequential Adversarial Inference
	Slide 22
	Slide 23
	Slide 24: Example on satellite rendezvous 
	Slide 25: Example on satellite rendezvous 
	Slide 26: Example on satellite rendezvous 
	Slide 27: Example on satellite rendezvous 
	Slide 28: Examples of design from STL
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35: GUAM - JAX Version Translation
	Slide 36: Implementation and testing
	Slide 37: Execution order
	Slide 38: Integration
	Slide 39: Function without direct python equivalent
	Slide 40: Debugging
	Slide 41: Result comparison
	Slide 42

