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Data-driven Control Design

Distribution
Dependent
Pipeline!
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Human or Compute heavy (MPC)

{i(i), az(i), u(i)} ~ Dirain Imitation Learning

« Training data distribution; True dynamics & data logging policy

« Training data has an associated distribution




The Role of Training Distribution

Control Design Regression
u =7 (w; fo) [m fo(z,u) = f(z,u)
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The Roleﬁof Training Distribution
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Robustness & Distribution Shifts

Epsitemic & A
fg # f’ (:L‘, ’LL) ™~ Dtrue Dtrue 7& Dt'rain

* We want to be robust to epistemic and aleatoric
uncertainties such that
* We can quantify the distribution shift

Dt'rue S A(Dtmin)
« True distribution always lies within a known ball

« We can mitigate the distribution shift

* We can control the size of the guaranteed
set A(Dtrain)

minrea(p,.,;,) (Pr{Control objective is met}) > 1 —§



Robustness Certificates

Why certificates A(Dyqin) in the space of distributions?
« Upstream nominal controllers designed with certificates of distributional rob.
» Available data with associated distribution
Pp{ Control objective is met} > 1 — 4§
 Availability of data with true distribution is difficult to justify
- Expensive and unsafe T¥.,. Dirain
« Only training data is available: from past operation, sim etc.
* Instead, if we can produce certificates of distributional robustness
Dirve € A(Dirain)

* Robust nominal control — Distributionally robust control, learning, and

optimization minpea(p,,,,)(Pr{Control objective is met}) > 1 — 6



Distributionally Robust
Adaptive Control
(DRAC)



DRAC minrea(p,.,;,) (Pr{Control objective is met}) > 1 — d<
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Control augmentation u, to guarantee certificates of distributional robustness




L4 Adaptive Control Architecture

» Guaranteed uniform performance bounds Lowpass | Ug | T
_ Filter J > J
and robustness margins
- -
- Validated for manned and unmanned aerial . v s
obustness ‘ State I
. : - . Predictor w
vehicles, oll drilling operations,
hydraulic pumps, etc. &|  (adeomton ] 7
.y . . . Law
« Commercialized by various industries, \

Including Raymarine, Caterpillar, JOUAV
Performance

Automation Tech, etc.
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L, Adaptive Control: Timeline

First papers
appeared at ACC @ @» Ilaylheon
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unstable aircraft
configurations
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Tests on Learjet and F16 at
the Edwards AFB
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Nonlinear ItO Processes

S;Il-;ltjeem dXy = F“(Xt’ U)dt + Fa(Xt,Ut;ﬁ)th, X ~ Q

* W,: Brownian motion
« Gaussian Markov Process
 Stationary independent increments: Lévy process
« Continuous and nowhere differentiable, almost surely

« Motivation: Every almost surely continuous process with independent

Increments is Gaussian [1]

* Modelling uncertain (learned) systems

0000000
[1] Skorokhod, A. "Random Processes with Independent Increments, Nauka, Moscow, 1964." (1991



Nonlinear ItO Processes

S;‘tfm dX, = F,(X;, Up)dt + Fo(X, Uy ®)dW;, X, ~ Q;

Uncertain drift. F,(Xy, Up)dt = f(X:) + 9(Xe)(Ur + h(X3)) + 1(X3)

« Known drift component
« Matched and unmatched uncertainties

* Locally Lipschitz, linear growth



Nonlinear ItO Processes

S;Il-;ltjeem dXy = F“(Xt’ U)dt + Fa(Xt,Ut;ﬁ)th, X ~ Q

Uncertain diffusion Fo (X, Up)dt = [9g(Xy)(Us + h(Xy)) p(Xt) + q(Xy)]
« Known diffusion component: uniformly bounded

* Drift uncertainty

: . 1
» sublinear growth, Holder continuous a < E

* Robust approaches fail due to the growth
 Control channel noise parameter 9 ¢ R

« Strongerresultsif b ¢ Slifo(Rm) (Sobolev space)

 twice-weakly differentiable and locally essentially bounded: ReLU DNN



Systems

True dX; = F,(X;,U;)dt + FU(Xt,Ut;ﬁ) X; ~ Q

System
F”(Xt, Ut)dt = f(Xt) -+ g(Xt)(Ut + h(Xt)) + l(Xt)

Fo (X, Up)dt = [9g(Xy)(Us + h(Xy)) p(Xe) + q(X3)]

Nominal dX; = F,(X;,Up)dt + FU(X;‘;Ut*] daw’,

System

*

True system - epistemic uncertainties

True System
Measure
(Distribution)

W Wy Q;

Independent
Brownian motions

Dt'rue

[

Distribution Shift |

X7 ~Q;

Dlearn

Nominal System

Measure

(Distribution)

Q;
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Goals

Nominal  jyx* _ F (X7, Up)dt + FU(X;:Ut*)th*,

System
1ir

W*(Xf§f9)

System

™ (Xt; fe)

>

X: ~ @;‘
~ _ ™
Learned via
Nominal
Distribution D )
\ J [ Distribution Shift ]

True  gx, — F”(Xt’gﬁ)dt + Fo (X Uy 9)dWy,

« Learned controller on true system: Distribution shift

« Guarantees of safety and predictabllity: Invalid

Xt’\‘@t




Goals

Nominal x __ x TT* n * T TH * x| oy
System dX; = FI«L( tvUt )dt T FU (Xt,Ut )th y Xt @t ([Tounded ]
True

dX, = F,(Xy,U)dt + Fy(Xo U 9)dWy,, X; ~ Q, «—

System T
W*(Xﬁfe) +| Ta (Xt;fO)

« We want to design a feedback augmentation such that

» True distribution Q, remains uniformly bounded around the nominal
ST N
distribution (;

* Robustness bounds used upstream for DR planning and control

« Bound in the sense of Wasserstein metric
« Optimal transport theory

* A metric on the space of distributions (distance and shape)



The Goals: Pictorial Depiction o\ g,
+ Foreacht >0 W,(Q;Q;) <p :ﬁ@f S A(PQI)\
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Controller

Nominal n n *
Sf;g"tg‘ri dX; = F, (X5, Up)dt + F,(X;Up)dWwy, X;~Q

S;I/-:;lflceem dXy = F“(Xt’ Ut)dt + Fa(Xt,Ut; ﬁ)th, X ~ Q

The controller has the architecture of an £, !

adaptive controller —— > EsConoller <

|
| PR | D e — J
D e e e - U
The controller has three main components T Ll__{
P Filter System

State Predictor R J' )
Adaptathn LaW | State Predictor

i_g _____ J

Low-Pass Filter —
z | Adaptation Law

I\ J

Predictor: System driven by colored noise LS =====
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Numerical Experimentation

Angular rate dynamics of a quadrotor

Drift and diffusion uncertainties

Divergence of nominal and true
distributions w.(0.0,) : 100.314
N /\ A
w,(Q, ,q,) :100.314 AN AR
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Numerical Experimentation
DRAC control

Independent Brownian motions — Convergence up to a nonzero limit

* * *
Xt,],'z _Xr.,l,z Xt_.]._3 _Xf.,l,s Xt_.2._3 _Xf.,2,3
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Boundedness and Convergence of distributions in the Wasserstein metric
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Numerical Experimentation
DRAC control

Independent Brownian motions — Convergence up to a nonzero limit

w,(@Q,.Q,) : 102.825 w,(Q, .q,) : 165.459
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Boundedness and Convergence of distributions in the Wasserstein metric
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On-going work

Further experimentation of DRAC

V&V of controlled systems with learned components in the loop
 Distributional certificates
* Deep learned dynamics and controllers

* Learned sensing (perception)

Propagation of robust data-driven certificates through the complete control

pipeline

Ongoing: Distributionally robust planning and control

26
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