A Distributionally Robust Adaptive Approach to Data-driven Control

Aditya Gahlawat, Sambhu Karumanchi

Advanced Controls Research Laboratory PI: Naira Hovakimyan

Mechanical Science and Engineering University of Illinois at Urbana-Champaign

NASA ULI Seminar, September 8, 2023

Data-driven Control Pipeline

Data-driven Control Design

Data Distribution Dependence

- Training data distribution: True dynamics & data logging policy
- Training data has an associated distribution

The Role of Training Distribution

The Role of Training Distribution

Robustness & Distribution Shifts

Epsitemic & Aleatoric

$${\hat f}_{ heta}
eq f, \quad (x,u) \sim {\cal D}_{true} \quad igstarrow {\cal D}_{t}$$

$$\mathcal{D}_{true}
eq \mathcal{D}_{train}$$

- We want to be robust to epistemic and aleatoric uncertainties such that
 - We can quantify the distribution shift

 $\mathcal{D}_{true}\ \in \Delta(\mathcal{D}_{train})$

- True distribution always lies within a known ball
- We can mitigate the distribution shift
 - We can control the size of the guaranteed set $\Delta(\mathcal{D}_{train})$

 $\min_{\Gamma\in\Delta(\mathcal{D}_{train})}(\mathbb{P}_{\Gamma}\{ ext{Control objective is met}\})\geq 1-\delta$

Robustness Certificates

Why certificates $\Delta(\mathcal{D}_{train})$ in the space of distributions?

- Upstream nominal controllers designed with certificates of distributional rob.
 - Available data with associated distribution

 $\mathbb{P}_{\mathcal{D}}\{ ext{Control objective is met}\} \geq 1-\delta$

- Availability of data with true distribution is difficult to justify
 - Expensive and unsafe \mathcal{D}_{train}
 - Only training data is available: from past operation, sim etc.
- Instead, if we can produce certificates of distributional robustness

$$\mathcal{D}_{true}~\in \Delta(\mathcal{D}_{train})$$

• Robust nominal control \rightarrow Distributionally robust control, learning, and optimization $\min_{\Gamma \in \Delta(\mathcal{D}_{train})} (\mathbb{P}_{\Gamma} \{ \text{Control objective is met} \}) \geq 1 - \delta$

Distributionally Robust Adaptive Control (DRAC)

Control augmentation u_a to guarantee certificates of distributional robustness

L₁ Adaptive Control Architecture

- Guaranteed uniform performance bounds and robustness margins
- Validated for manned and unmanned aerial vehicles, oil drilling operations, hydraulic pumps, etc.
- Commercialized by various industries, including Raymarine, Caterpillar, JOUAV

Automation Tech, etc.

\mathcal{L}_1 Adaptive Control: Timeline

The Systems

Nonlinear Itô Processes

True System

$$dX_t = F_\mu(X_t, U_t) dt \,+\, F_\sigma(X_t, U_t; artheta) d {W_t}, \quad X_t \sim \mathbb{Q}_t$$

- W_t : Brownian motion
 - Gaussian Markov Process
 - Stationary independent increments: Lévy process
 - Continuous and nowhere differentiable, almost surely
 - Motivation: Every almost surely continuous process with independent increments is Gaussian [1]
 - Modelling uncertain (learned) systems

Nonlinear Itô Processes

$$\begin{array}{l} \text{True} \\ \text{System} \end{array} dX_t = \frac{F_{\mu}(X_t,U_t)}{F_{\mu}(X_t,U_t)}dt + F_{\sigma}(X_t,U_t;\vartheta)dW_t, \quad X_t \sim \mathbb{Q}_t \end{array}$$

$$\text{Uncertain drift} \ F_{\mu}(X_t, U_t) dt = \frac{f(X_t)}{f(X_t)} + g(X_t)(U_t + \frac{h(X_t)}{h(X_t)}) + \frac{l(X_t)}{h(X_t)}$$

- Known drift component
- Matched and unmatched uncertainties
 - Locally Lipschitz, linear growth

Nonlinear Itô Processes

True
$$dX_t = F_\mu(X_t, U_t)dt + \frac{F_\sigma(X_t, U_t; \vartheta)}{F_\sigma(X_t, U_t; \vartheta)}dW_t, \quad X_t \sim \mathbb{Q}_t$$

Uncertain diffusion $F_{\sigma}(X_t, U_t)dt = \left[\vartheta g(X_t)(U_t + h(X_t)) \quad p(X_t) + q(X_t) \right]$

- Known diffusion component: uniformly bounded
- Drift uncertainty
 - sublinear growth, Holder continuous $\alpha \leq \frac{1}{2}$
 - Robust approaches fail due to the growth
- Control channel noise parameter $\vartheta \in \mathbb{R}$
 - Stronger results if $h \in S^{2,\infty}_{loc}(\mathbb{R}^m)$ (Sobolev space)
 - twice-weakly differentiable and locally essentially bounded: ReLU DNN

SystemsTrue
System
$$dX_t = F_{\mu}(X_t, U_t)dt + F_{\sigma}(X_t, U_t; \vartheta)dW_t$$
,
 $F_{\mu}(X_t, U_t)dt = f(X_t) + g(X_t)(U_t + h(X_t)) + l(X_t)$
 $F_{\sigma}(X_t, U_t)dt = [\vartheta g(X_t)(U_t + h(X_t))]$ $X_t \sim \mathbb{Q}_t$ Nominal
System $dX_t^* = \bar{F}_{\mu}(X_t^*, U_t^*)dt + \bar{F}_{\sigma}(X_t^*, U_t^*)dW_t^*$,
True system - epistemic uncertainties $X_t \sim \mathbb{Q}_t^*$ Independent
Brownian motionsTrue System
Measure
(Distribution)Nominal System
Measure
(Distribution) $W_t \quad W_t^*$ \mathbb{Q}_t \mathbb{Q}_t^*

The Goals

t = 0.0

Goals

- Learned controller on true system: Distribution shift
 - Guarantees of safety and predictability: Invalid

Goals

- We want to design a feedback augmentation such that
- True distribution \mathbb{Q}_t remains uniformly bounded around the nominal distribution \mathbb{Q}_t^{\star}
 - Robustness bounds used upstream for DR planning and control
- Bound in the sense of Wasserstein metric
 - Optimal transport theory
 - A metric on the space of distributions (distance and shape)

Controller

Nominal System

$$dX^\star_t = {ar F}_\mu(X^\star_t, U^\star_t) dt \, + \, {ar F}_\sigmaig(X^\star_{t,} U^\star_tig) dW^\star_t, \quad X^\star_t \sim \mathbb{Q}^\star_t$$

True System

$$dX_t = F_\mu(X_t, U_t) dt \,+\, F_\sigma(X_{t,} U_t; artheta) dW_t, \quad X_t \sim \mathbb{Q}_t$$

The controller has the architecture of an \mathcal{L}_1 adaptive controller

The controller has three main components

State Predictor

Adaptation Law

Low-Pass Filter

Predictor: System driven by colored noise

Numerical Experimentation

Angular rate dynamics of a quadrotor

Drift and diffusion uncertainties

Divergence of nominal and true distributions

Numerical Experimentation

DRAC control

Independent Brownian motions → Convergence up to a nonzero limit

Boundedness and Convergence of distributions in the Wasserstein metric

Numerical Experimentation

DRAC control

Independent Brownian motions → Convergence up to a nonzero limit

Boundedness and Convergence of distributions in the Wasserstein metric

On-going work

- Further experimentation of DRAC
- V&V of controlled systems with learned components in the loop
 - Distributional certificates
 - Deep learned dynamics and controllers
 - Learned sensing (perception)
- Propagation of robust data-driven certificates through the complete control pipeline
- Ongoing: Distributionally robust planning and control