DiffTune: Auto-Tuning through Auto-Differentiation

Sheng Cheng

Postdoctoral Research Associate

Joint work with Minkyung Kim, Lin Song, Chengyu Yang, Yiquan Jin, Shenlong Wang, and Naira Hovakimyan

> AVIATE Seminar September 8, 2023

Advanced Air Mobility

Credits: NASA Graphics/Kyle Jenkins

Motivation and Background

- Controller design -> **Controller tuning** -> Performance delivery
- Tuning is often done by hand: tedious and time-consuming.
 - Nonlinear relationship between parameters and performance metric;
 - Tuning decisions scale exponentially to number of parameters (in the worst case).
- Solution: auto-tuning

	Model-based	Model-free
Pros	Leveraging system's knowledge Stability by design (e.g., Lyapunov)	Data-driven with many tools (GPR, DNN, etc) Generally, no assumptions on the system
Cons		
Literature	Combine the best	of the two worlds?

Problem Setup of Controller Tuning

Goal: tune parameter $\boldsymbol{\theta}$ to achieve smaller loss L, e.g., tracking error $L=\sum_{k=0}^{N} ||\boldsymbol{x}_{k}-\overline{\boldsymbol{x}}_{k}||^{2}$

dynamical system:

 $\boldsymbol{x}_{k+1} = f(\boldsymbol{x}_k, \boldsymbol{u}_k)$

with initial state x_0 given.

feedback tracking controller

 $\boldsymbol{u}_k = h(\boldsymbol{x}_k, \overline{\boldsymbol{x}}_k, \boldsymbol{\theta})$

parameterized by $oldsymbol{ heta}$

S. Cheng, M. Kim, L. Song, C. Yang, Y. Jin, S. Wang, N. Hovakimyan, "DiffTune: Auto-Tuning through Auto-Differentiation," 4 under review. https://arxiv.org/abs/2209.10021

DiffTune for Controller Tuning

Optimization formulation

 $\begin{array}{ll} minimize_{\theta \in \Theta} & L(\theta) \\ subject to & \mathbf{x}_{k+1} = f(\mathbf{x}_k, \mathbf{u}_k) \\ & \mathbf{u}_k = h(\mathbf{x}_k, \overline{\mathbf{x}}_k, \theta) \end{array}$

- Requiring differentiable dynamics and controller
 - Many controllers are differentiable, e.g., PID [Kumar, 2021], MPC [Amos, 2018;East, 2020], optimal control [Jin, 2020, 2022], CBF [Parwana, 2021; Vien, 2021].
- Solution method: *DiffTune*¹
 - Gradient-based method;
 - Stability, real-data compatibility, and efficiency.

How does DiffTune work?

 T. Lee, M. Leok, and N. H. McClamroch, "Geometric tracking control of a quadrotor UAV on SE(3)," in IEEE Conference on Decision and Control (CDC), 2010, pp. 5420–5425.

6

How to obtain the gradient $\nabla_{\theta} L$?

- Unroll the dynamical system and controller as a computational graph, where the model is still interpretable;
- Apply backward propagation to obtain $\nabla_{\theta} L$;

O PyTorch **TensorFlow**

 Efficient implementation using off-the-shelf tools from the learning community

Pros and Cons of Backward Propagation

Pros

- Leveraging the **efficient computational tools** developed in ML community.
- The gradient $\nabla_{\theta} L$ is **analytical**
 - Not computed by approximations (e.g., finite difference) or symbolic approaches
 - Analytical gradients yield better informed descent direction than numerical gradients.

Cons

• Incompatible with data from a physical system

Why Backward Propagation is Real-Data Incompatible?

- Backward propagation relies on the computational graph:
 - The graph is **traversed forward first** and then **backpropagated** to compute $\nabla_{\theta} L$.
 - The new states are obtained by **evaluating the "dynamics,"** only feasible in simulations.
- For a real system:
 - The new states are obtained by **sensor measurement** or **state estimation**.
 - The computational graph is **broken**.

Gradient Computation using Sensitivity Propagation

• Decomposition by chain rule:

$$\nabla_{\boldsymbol{\theta}} L = \sum_{k=0}^{N} \frac{\partial L}{\partial \boldsymbol{x}_{k}} \frac{\partial \boldsymbol{x}_{k}}{\partial \boldsymbol{\theta}} + \sum_{k=0}^{N-1} \frac{\partial L}{\partial \boldsymbol{u}_{k}} \frac{\partial \boldsymbol{u}_{k}}{\partial \boldsymbol{\theta}}$$

• Iteratively updating the sensitivities:

Sensitivity propagation: capable of running in parallel to the system's evolution

$$\frac{\partial x_{k+1}}{\partial \theta} = \left(\nabla_{x_k} f + \nabla_{u_k} f \nabla_{x_k} h\right) \frac{\partial x_k}{\partial \theta} + \nabla_{u_k} f \nabla_{\theta} h$$
$$\frac{\partial u_k}{\partial \theta} = \nabla_{x_k} h \frac{\partial x_k}{\partial \theta} + \nabla_{\theta} h$$

S. Cheng, M. Kim, L. Song, C. Yang, Y. Jin, S. Wang, N. Hovakimyan, "DiffTune: Auto-Tuning through Auto-Differentiation," under review. https://arxiv.org/abs/2209.10021

Auto-Tuning: You Still Need to Tune Hyperparameters

Can we eliminate hyperparameter tuning?

Using Sensitivity States for Hyperparameter-free Tuning

• Can we predict states subject to parameter change?

- First-order approximation of the states once the parameter θ changes by ϵ
- With the approximate state, we can approximate the loss $L(\theta + \epsilon)$.
- Pick ϵ^* to maximize the loss reduction $L(\theta) L(\theta + \epsilon)$. [Hyperparameter-free]

12

Hyperparameter-free Tuning: Two Methods

Optimizing over a scalar (Line search):

Find the optimal learning rate (scalar) α^* such that $L(\theta) - L(\theta + \alpha^* \nabla_{\theta} L)$ is maximized. **Optimizing over a vector (Gauss-Newton):** Find the optimal parameter update (vector) ϵ^* such that $L(\theta) - L(\theta + \epsilon^*)$ is maximized.

13

If the loss function is quadratic, then

- explicit formula of α^* and ϵ^* can be derived;
- ϵ^* has the identical form to the **Gauss-Newton** method.

Tuning: Hyperparameter-based vs Hyperparameter-free

	Hyperparameter-based	Hyperparameter-free
1 st -order		
2 nd -order		

14

Simulation Results

- Two trajectories with different characteristics
- HP-based:
 - Performance depends on the hyperparameter tuning.
- HP-free:
 - Gauss-Newton has the minimum loss albeit the parameters are tuned to be very aggressive;
 - Line-search produces acceptable gains with second-best loss reduction.

S. Cheng, L. Song, M. Kim, S. Wang, and N. Hovakimyan. "DiffTune⁺: Hyperparameter-Free Auto-Tuning using Auto-Differentiation." 5th L4DC Conference [Oral Presentation] (2023).

Experiments on a Real Quadrotor

- Tracking circular trajectories with 1, 2, 3 m/s speed
- RMSE reduction in all three speeds and superseding manual tuning
 - **3.5x** reduction in 3 m/s case within **10 trials**
- Gradient helps tuning for handling both the nonlinear mapping and highdimensional parameter space
- 1. T. Lee, M. Leok, and N. H. McClamroch, "Geometric tracking control of a quadrotor UAV on SE(3)," in IEEE Conference on Decision and Control (CDC), 2010, pp. 5420–5425.

0.5

Generalization of Tuned Parameters

Trajectory	Speed	Acc.	Tui	Hand-		
	[m/s]	[m/s²]	T1	T2	Т3	tuned
Circle	1	1	0.057	0.057	0.055*	0.090
0.98 1.00 1.02 1.04 1.04	2	4	0.272	0.107	0.166	0.180
$\begin{array}{c} 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\$	3	9	0.728	0.317	0.154	0.286
3D figure 8	0.59-1.43	0-1.35	0.055	0.049	19 0.048* 0.053	0.053
$\begin{array}{c} -1 \\ -1 \\ 0 \\ \chi_{(n_{1})} \\ 1 \\ -1 \\ 0 \\ \chi_{(n_{1})} \\ 1 \\ -1 \\ 0 \\ \chi_{(n_{1})} \\ 1 \\ -1 \\ 0 \\ \chi_{(n_{1})} $	1.18–2.86	0-5.41	0.106	0.088	0.083	0.092
Vertical figure 8	0.48-1.52	0-1.2	0.125	0.105	0.097*	0.096
$-1 \begin{array}{c} & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ $	0.96-3.04	0-2.4	0.178	0.130	0.098	0.127

 The parameters work the best with the trajectories they are tuned on.

When generalizing to variants of the figure 8 trajectory, high-speed parameters work better due to better adaptation to the agile angular

maneuvers.

٠

* minor oscillations (dissipated in finite time)

1. S. Cheng, M. Kim, L. Song, C. Yang, Y. Jin, S. Wang, N. Hovakimyan, "DiffTune: Auto-Tuning through Auto-Differentiation," under review. https://arxiv.org/abs/2209.10021

How to Handle Uncertainties?

- For real systems, the gradient can be contaminated by
 - Noise
 - Uncertainties
- Noise can be addressed by filtering or state estimation.
- How to handle the uncertainties?
 - **Compensate for the uncertainties** to reduce their impact.
 - Use L₁ adaptive augmentation: forcing the closed-loop
 system to behave like the nominal model by uncertainty
 compensation.
 - Preserving the validity of the gradient.

Ideal system $\dot{x}^* = f(x^*) + B(x^*)u$

Physical system (with uncertainties σ) $\dot{x} = f(x) + B(x)(u + \sigma)$

Physical system with \mathcal{L}_1 adaptive augmentation (\boldsymbol{u}_{ad}) $\dot{\boldsymbol{x}} = f(\boldsymbol{x}) + B(\boldsymbol{x})(\boldsymbol{u} + \boldsymbol{u}_{ad} + \boldsymbol{\sigma})$ $\|\boldsymbol{u}_{ad} + \boldsymbol{\sigma}\| \approx \mathbf{0}$

Ablation Study on DiffTune and $\mathcal{L}_1\mathsf{AC}$

Circle 1 m/s		\mathcal{L}_1		Circle 2 m/s		\mathcal{L}_1		Circle 3 m/s		\mathcal{L}_1	
RMSE [m]		off	on	RMSE [m]		off	on	RMSE [m]		off	on
DiffTune	off	0.089	0.075	DiffTune	off	0.275	0.251	DiffTune	off	0.618	0.466
	on	0.057	0.030		on	0.107	0.069		on	0.177	0.162

- Implementation of $\mathcal{L}_1 AC$ follows $\mathcal{L}_1 Quad^1$
- DiffTune and \mathcal{L}_1AC can individually improve performance:
 - DiffTune utilizes the first-order information to iteratively update the parameters;
 - $\mathcal{L}_1 AC$ compensates for the uncertainties.
- Best performance obtained when DiffTune and \mathcal{L}_1AC are used together.

 Wu, Zhuohuan*, Sheng Cheng*, Pan Zhao, Aditya Gahlawat, Kasey A. Ackerman, Arun Lakshmanan, Chengyu Yang, Jiahao Yu, and Naira Hovakimyan.
 "L₁ Quad: L₁ Adaptive Augmentation of Geometric Control for Agile Quadrotors with Performance Guarantees," under review, arXiv preprint arXiv:2302.07208 (2023).

Open-Source Tool Set: DiffTuneOpenSource

Generation Sheng-Cheng / DiffTuneOpen	Source Public	St Pin				
<> Code Issues In Pull requests	🕑 Actions 🗄 Projects 🖽 Wiki					
P main → P 1 branch ○ 0 tags		Go to file Add file ▼ <> Code ▼				
Sheng-Cheng Update README.md		9ba3ed7 last week 🕥 20 commits				
examples	minor clean up	3 weeks ago				
늘 template	update the template	3 weeks ago				
🗋 .gitattributes	Initial commit	last month				
🗅 .gitignore	minor updates	last month				
	Initial commit	last month				
🖺 README.md	Update README.md	last week				

- Enabling the automatic generation of the partial derivatives required for sensitivity propagation.
- Offering one **template** and two **examples** for users' custom tuning scenarios.
- Neural network controllers are supported!

Ongoing and Future Work

- DiffTune-MPC
- (Online) system identification and auto-tuning
- Nondifferentiable dynamics/controllers
- Tradeoff between performance and robustness

Many thanks to my advisor, collaborator, and students: Naira Hovakimyan, Shenlong Wang, Minkyung Kim, Lin Song, Chengyu Yang, Yiquan Jin, John Bullock, Yuliang Gu.

