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• Robustifying Perception Against Adversaries. 



Motivation

Controller needs to be robust to:

• Uncertainty, disturbances

• Dynamic obstacles in the environment



Controller Criteria

Safe Optimal

Efficient

Robust Control

Tube-based Model 

Predictive Control



Tube-based Model Predictive Control (Tube-based MPC)

Nominal trajectory

Safe tube

• Nominal controller generates nominal trajectory

• Feedback controller keeps true state safe in the presence of uncertainty

• Note that tube is for theoretical bounds

• Computing the tube is intractable!



• Downsides of traditional tube-based MPC:
• Need to know uncertainty a priori

• Does not respond to the environment

• Difficult to tune – parameters have nonlinear effect on tube shape and size

• Our work: Differentiable Tube-based MPC (DT-MPC) [1]
• Tune controller parameters online and in real-time, but in a principled (optimal) 

manner

• Responds to the environment, without knowing disturbances a priori

• Enforces safety at all timesteps using efficient state constraint satisfaction 
methodology (discrete barrier states [2])

Tube-based Model Predictive Control (Tube-based MPC)

[1] Oshin, A., & Theodorou, E. A. (2023). Differentiable Robust Model Predictive Control. arXiv preprint arXiv:2308.08426.

[2] Almubarak, H., Stachowicz, K., Sadegh, N., & Theodorou, E. A. (2022). Safety Embedded Differential Dynamic Programming using Discrete Barrier 

States. IEEE Robotics and Automation Letters, 7(2), 2755-2762.



• Optimal control algorithm is a function of the problem parameters:

• How to choose parameters “optimally”?

• Define task-based loss function → bilevel optimization problem

• How to compute gradient                      efficiently?

Theoretical Foundations of Our Work

Solver (iLQR, DDP, etc.)

Upper-level

Lower-level



• Key insight: gradients can be computed by solving a control problem!

• Choice of 𝐹?

Theoretical Foundations of Our Work



• Generalize previous work [3-5] showing a second-order approximation 
is necessary to compute accurate derivatives

[3] Amos, B., Jimenez, I., Sacks, J., Boots, B., & Kolter, J. Z. (2018). Differentiable MPC for End-to-End Planning and Control. Advances in Neural Information Processing Systems, 31.

[4] Dinev, T., Mastalli, C., Ivan, V., Tonneau, S., & Vijayakumar, S. (2022). Differentiable Optimal Control via Differential Dynamic Programming. arXiv preprint arXiv:2209.01117.

[5] Jin, W., Wang, Z., Yang, Z., & Mou, S. (2020). Pontryagin Differentiable Programming: An End-to-End Learning and Control Framework. Advances in Neural Information Processing Systems, 33, 7979-7992.

Theoretical Foundations of Our Work

Solving this system is equivalent to 

an iteration of DDP!



• Gradients taken with respect to problem parameters “for free”

• Only requires one additional iteration of the optimizer (e.g., DDP)

• Reuses matrix factorization from final iteration 

• Contrast to automatic differentiation, which requires full unrolling of 

the optimizer iterations (𝑂(𝐾) where 𝐾 is the number of solver 
iterations)

• Learnable parameters:

• Nominal controller cost function weights

• Sensitivity to obstacles → determines tube size

• Model parameters (unknown coefficients, parameters of a NN 
model, etc.)

Differentiable Optimal Control



Tube-based MPC

Nominal control problem

Ancillary control problemAncillary control problem



• Differentiable MPC – Amos et al. (2018) [3]
• Only iLQR approximation -> gradients are incorrect

• Requires matrix calculus

• Dinev et al. (2022) [4]
• DDP approximation

• Requires matrix calculus

• Pontryagin Differentiable Programming – Jin et al. (2020) [5]
• Requires solving matrix control system -> slow

• Our work:
• Agnostic of control solver

• Quadratic approximation is necessary  to compute accurate gradients (IFT)

Connections with Prior Works

[3] Amos, B., Jimenez, I., Sacks, J., Boots, B., & Kolter, J. Z. (2018). Differentiable MPC for End-to-end Planning and Control. Advances in Neural Information 

Processing Systems, 31.

[4] Dinev, T., Mastalli, C., Ivan, V., Tonneau, S., & Vijayakumar, S. (2022). Differentiable Optimal Control via Differential Dynamic Programming. arXiv preprint 

arXiv:2209.01117.

[5] Jin, W., Wang, Z., Yang, Z., & Mou, S. (2020). Pontryagin Differentiable Programming: An End-to-end Learning and Control Framework. Advances in Neural 

Information Processing Systems, 33, 7979-7992.



• Inverse optimal control 
objective – learn cost 
function weights that 
generate expert behavior 
(17 parameters)

• Quadrotor dynamics

   (12 states, 4 controls)

• Note log scale on y-axis

Comparison with Prior Works

Amos, B., Jimenez, I., Sacks, J., Boots, B., & Kolter, J. Z. (2018). Differentiable MPC for End-to-End Planning and Control. Advances in Neural Information Processing Systems, 31.

Dinev, T., Mastalli, C., Ivan, V., Tonneau, S., & Vijayakumar, S. (2022). Differentiable Optimal Control via Differential Dynamic Programming. arXiv preprint arXiv:2209.01117.

Jin, W., Wang, Z., Yang, Z., & Mou, S. (2020). Pontryagin Differentiable Programming: An End-to-End Learning and Control Framework. Advances in Neural Information Processing Systems, 33, 7979-7992.



• Success: reach target

• Collision: hit an obstacle, leave environment bounds

• Disturbances:

• ~1/2 the max control magnitude (discrete-time) for Dubins/Quadrotor

• 5x the max control magnitude for the robot arm!

• Sampled uniformly

Experimental Results – Summary 



Experimental Results

DT-MPC:

• Safer while completing the task with 
higher probability

• Emergent behavior – tube size and 
shape is adapted based on 
disturbances encountered

• Max velocity control: 0.1 m s-1

• Max turning rate: ~0.03 rad s-1

• Max disturbance magnitude: 0.05 s-1

Dubins Vehicle Task



Experimental Results

Quadrotor Task

DT-MPC:

• Robust to very large disturbances

• Max controls (roll-pitch-yaw): 0.2 Nm

• Max disturbance magnitude: 0.1 Nm



Experimental Results

NT-MPC DT-MPC

• Max control: ~0.02 Nm

• Max disturbance: 0.1 Nm



Outline

• Differentiable Optimization for Robust Model Predictive Control 
Architectures.

• Safety Embedded Optimal Decision Making and Control via 
(Tolerant) Barrier States

• Robustifying Perception Against Adversaries. 



Safety Embedded Optimal Decision 
Making and Control via (Tolerant) 

Barrier States
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We consider the safety-critical dynamical system
𝑥
˙

= 𝑓 𝑡, 𝑥, 𝑢

where 𝑥 ∈ 𝒟 ⊂ ℝ𝑛, 𝑢 ∈ 𝒰 ⊂ ℝ𝑚, 𝑓 ∈ 𝐶1 𝒟 × 𝒰, 𝒟 , 𝑓 0 = 0 (w.l.o.g). 

subject to
ℎ 𝑡, 𝑥 > 0 ∀𝑡; ∀𝑥0∈ 𝑆 ⊂ ℝ𝑛

where 𝑆 = {𝑥 ∈ ℝ𝑛: ℎ 𝑡, 𝑥 > 0}. 

Goal: Compute a feedback control policy 𝑈∗(𝑥) that achieves performance objectives while 
rendering the nonempty set 𝑆 controlled invariant over the whole horizon.

Safety-critical Control Problem

Safety 
Condition

safe set

ℝ𝑛

𝑆
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ℎ 𝑥 > 0

ℎ 𝑥 < 0

ℎ 𝑥 = 0



Barrier States (BaS)
Barrier function 𝐵 ∈ 𝐶∞ 𝑆, ℝ :
lim
𝑎→0

 𝐵 𝑎 = ∞, lim
𝑎→∞

 𝐵 𝑎 = 0, lim
𝑎∈ℝ+

 𝐵 𝑎 ≥ 0.

Barrier over the state 𝛽 𝑥 ≔ 𝐵 ∘ ℎ(𝑥). 

⇒ 𝛽 𝑥 → ∞ if and only if ℎ 𝑥 → 0. 

Barrier function ovulation over time:

 𝛽
˙

𝑥 = 𝐵′ ℎ 𝑥 𝐿𝑓(𝑥,𝑢)ℎ 𝑥

Idea: augment the state equation of the barrier to the model of system:

𝑥
˙

= 𝑓 𝑥, 𝑢

𝛽
˙

= 𝑓𝛽 𝑥, 𝛽, 𝑢

New model:

𝑥
¯
˙

= 𝑓
¯

𝑥
¯
, 𝑢

where 𝑥
¯

=
𝑥
𝛽 , 𝑓

¯

=
𝑓

𝑓𝛽
.  

Safety 
Embedded 

System

1/ℎ

−log
ℎ

1 + ℎ tanh−1 𝑒−ℎ
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Safety Embedded Regulation
Define 𝑧 ≔ 𝛽 𝑥 − 𝛽 0 ⇒ 𝑧 0 = 0.

Stabilizable Barrier state:

  𝑧
˙

= 𝑓𝑧  ≔ 𝐵′ 𝐵−1(𝑧 + 𝛽0) 𝐿𝑓(𝑥,𝑢)ℎ 𝑥 − 𝛾 𝑧 + 𝛽0  − 𝛽 𝑥
  

Hence, the safety embedded system: 

𝑥
¯
˙

= 𝑓
¯

𝑥
¯
, 𝑢

where 𝑥
¯

=
𝑥
𝑧

, 𝑓
¯

=
𝑓

𝑓𝑧
.  

Results: 

• Assume: stabilizing continuous feedback controller 𝑢 = 𝐾 𝑥
¯

 for 𝑥
¯
˙

= 𝑓
¯

(𝑥
¯
, 𝑢).

• Then, 𝑢 = 𝐾(𝑥
¯
) is safe with respect to the safety region 𝑆 = 𝑥 ∈ 𝒟: ℎ 𝑥 > 0

(safely stabilizes the origin of the original safety-critical system). 
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Consider the open loop unstable linear system given by
𝑥
˙

=
1 −5
0 −1

𝑥 +
0
1

𝑢

subject to 𝒞 = 𝑥: (𝑥1 − 2 2 + 𝑥2 − 2 2 − 0.52 > 0} ∀𝑡 > 0 given that 𝑥 0 ∈ 𝒞 
with desired closed-loop system’s poles at −3 and −5.

Using the inverse barrier function, we define the BaS and linearizing the system yields

𝑥
¯
˙

=

1 −5 0
0 −1 0

4𝛾 + 4

7.752

4𝛾 − 24

7.752
−𝛾

𝑥 +

0
1
4

7.752

𝑢

Using pole-placement, the safe stabilizing controller is 

.

Nonlinear controller!𝑢 = −4.43𝑥1 + 8.38 𝑥2 − 5.63 𝑧

Illustrative Example

24



Constrained Linear Control Example

25



Consider the optimal control problem

  𝑉 𝑥 0 = min
𝑢

1

2
0

∞
𝑄 𝑥 + 𝑢⊺𝑅𝑢 𝑑𝑡  

subject to 𝑥
˙

= 𝑓 𝑥 + 𝑔 𝑥 𝑢 and 𝒞 = {𝑥 ∈ 𝒟: ℎ 𝑥 > 0} ∀𝑡 ≥ 0.

Embed BaS :

Hamilton-Jacobi-Bellman (HJB) equation is

Safety Embedded Optimal Control

26

min
𝑢

 𝑉
𝑥
¯
∗ 𝑓

¯

𝑥
¯

+ 𝑔
¯

𝑥
¯

𝑢 +
1

2
𝑢⊺𝑅𝑢 +

1

2
𝑄 𝑥

¯

= 0

𝑉 𝑥
¯

0 = min
𝑢

1

2
0

∞
𝑄 𝑥

¯
+ 𝑢⊺𝑅𝑢 𝑑𝑡 subject to 𝑥

¯
˙

= 𝑓
¯

𝑥
¯

+

𝑔
¯

𝑥
¯

𝑢

Results:

• Assume there exists a unique analytic value function 𝑉∗ 𝑥
¯

 satisfying the HJB 
equation

• Then
• The optimal safe feedback control is:

• 𝑉∗ 𝑥
¯

 is a Lyapunov function and 𝑢safe
∗ 𝑥

¯
 renders the embedded system’s 

origin asymptotically stable. 
• The barrier state 𝑧 is bounded guaranteeing the generation of safe trajectories. 

𝑢safe
∗ 𝑥

¯

= −𝑅−1𝑔
¯

𝑥
¯ ⊺

𝑉
𝑥
¯
∗ 𝑥

¯



Safety Embedded Differential Dynamic Programming (DBaS-DDP)

Expanding the dynamic programming principle about a nominal trajectory (𝑥
~
¯

,𝑢
~

)

𝑉𝑘 𝑥
¯

𝑘 = min
𝑢𝑘

𝑙 𝑘, 𝑥
¯

𝑘, 𝑢𝑘 + 𝑉𝑘+1 𝑓
¯

𝑘, 𝑥
¯

𝑘 , 𝑢𝑘

We get a variation function 𝐻. Recursively compute the local second order model of 𝑉 and the control gains 
in the backward pass:

𝑉𝑘 = 𝑉𝑘+1 −
1

2
𝐻𝑢𝑘

𝐻𝑢𝑢𝑘
−1 𝐻𝑢𝑘

⊺ , 𝑉
𝑥
¯

𝑘
= 𝐻

𝑥
¯

𝑘
− 𝐻

𝑥
¯
𝑢𝑘

𝐻𝑢𝑢𝑘
−1 𝐻𝑢𝑘

, 𝑉
𝑥
¯
𝑥
¯

𝑘
=

1

2
𝐻

𝑥
¯
𝑥
¯

𝑘
− 𝐻

𝑥
¯
𝑢𝑘

𝐻𝑢𝑢𝑘
−1 𝐻

𝑢𝑥
¯

𝑘

where

𝐻
𝑥
¯

𝑘
= 𝑙

𝑥
¯

𝑘
+ 𝑉

𝑥
¯

𝑘+1

⊺ 𝑓
¯

𝑥
¯

𝑘
, 𝐻𝑢𝑘

= 𝑙𝑢𝑘
+ 𝑉

𝑥
¯

𝑘+1

⊺ 𝑓
¯

𝑢𝑘
, 𝐻

𝑥
¯
𝑥
¯

𝑘
= 𝑙

𝑥
¯
𝑥
¯

𝑘
+ 𝑓

¯

𝑥
¯

𝑘

⊺ 𝑉
𝑥
¯
𝑥
¯

𝑘+1
𝑓
¯

𝑥
¯

𝑘
+ 𝑉

𝑥
¯

𝑘+1
𝑓
¯

𝑥
¯
𝑥
¯

𝑘
, 

𝐻𝑢𝑢𝑘
= 𝑙𝑢𝑢𝑘

+ 𝑓
¯

𝑢𝑘
⊺ 𝑉

𝑥
¯
𝑥
¯

𝑘+1
𝑓
¯

𝑢𝑘
+ 𝑉

𝑥
¯

𝑘+1
𝑓
¯

𝑢𝑢𝑘
 , 𝐻

𝑥
¯
𝑢𝑘

= 𝑙
𝑥
¯
𝑢𝑘

+ 𝑓
¯

𝑥
¯

𝑘

⊺ 𝑉
𝑥
¯
𝑥
¯

𝑘+1
𝑓
¯

𝑢𝑘
+ 𝑉

𝑥
¯

𝑘+1
𝑓
¯

𝑥
¯
𝑢𝑘

The feedforward and feedback control gains 𝐤𝑘 = 𝐻𝑢𝑢𝑘
−1 𝐻𝑢𝑘

 and 𝐊𝑘 = 𝐻𝑢𝑢𝑘
−1 𝐻

𝑢𝑥
¯

𝑘
.

Then the forward pass consists of        𝛿𝑢𝑘
∗ = 𝐤𝑘 + 𝐊𝑘𝛿𝑥

~
¯

𝑘 

𝑢𝑘 = 𝑢
~

+ 𝛿𝑢𝑘
∗

𝑥
¯

𝑘+1 = 𝑓
^

𝑘, 𝑥
¯

𝑘, 𝑢𝑘

The backward passes and forward passes are iterated until convergence.





        Double Integrator (point robot)                       Differential wheeled robot

Penalty refers to adding the barrier directly to the cost function. 

Success rate is the number of percentage of trajectories that reach the target safely.



a. Switch positions while avoiding collision - Robotarium

4x
2x
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Embedded Barrier States
• Provide safety guarantees and 

convergence

• Relative-degree requirement of CBF is 
avoided

• Provide feedback policies of the 
barrier that enhance safety and 
robustness 

• Easy to tune

• Prone to local minima around the 
unsafe regions/obstacles

• Limited exploration (only feasible 
solutions are allowed)
→ may limit local iterative 
algorithms to converge to a 
meaningful minima

Augmented Lagrangian
• Rely on treating the constraints as 

soft ones by incorporating them into 
the cost function 

• Allow for unsafe trajectory 
initialization 

• Allow for intermediate solutions to be 
partially unsafe, which enhances their 
ability to arrive at nontrivial solutions. 

• Final solution might also be unsafe

• Require additional parameters that 
need considerable tuning

31

What are the issues of DBaS?
(in trajectory optimization)



Embedded Tolerant Barrier States

• Merge the safety capabilities of DBaS-DDP and the exploration efficiency of 
tolerant approaches into a single methodology

• Allow for temporary constraint violation while iteratively improving the 
solution

• Can approximate BaS safety guarantees 

• Have access to the gradient information within the unsafe set, avoiding local 
minima

• Provide feedback policies of the barrier that enhance safety and robustness 32

Solution: Tolerant-BaS



Solution: Tolerant-BaS

33



Solution: Tolerant-BaS

34
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Multi-agent Example
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Implementations and Comparison 
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Implementations and Comparison 
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Motivation



Parallels Between Optimal Control  and Deep Learning

State Output Activation

Controls Weights

Time Horizon Number of Layers 

Terminal Cost Loss Functions

Optimal Control Deep Learning

Cost Function

Dynamics



• Robustness in Neural Networks
• Deep learning models potent but fragile under adversarial attacks

• Adversarial Training: optimal weights for worst case perturbation 

Introduction

• Robustness in Optimal Control



Methodology
Neural ODEs GTSONO

For system with dynamics:

Minimization of loss function

Game Theoretic OC

Find saddle point

Dynamics with Disturbances



Methodology
Update Law of closed loop minimax DDP: 

𝛿𝑢𝑡

𝛿𝑣𝑡
 = 

ℓ𝑢

ℓ𝑣
 + 

𝐾𝑢

𝐾𝑣
𝛿𝑥𝑡

Forward 

Pass

Feedback gains

Feedforward gains

GTSONO -- Algorithm

Backward

Pass



Experiments

1. Optimizer Comparison

2. Adapt GTSONO to adversarial training methods

3. Minimax DDP vs GDA with Hessian Precondition

• Attacks: 

a. Projected Gradient Descent, 

b. Fast Gradient Sign Method,

c.  Carlini-Wanger

Natural 

Image

FGSM 

attacked
PGD 

attacked



Results

1. Optimizer Comparison

• Compare GTSONO against state-of-the-art 

     neural ODE optimizers, under natural training

• Outperform benchmark optimizers, 

     providing on average more robust 

     and more confident evaluations



Results

2. Adapt GTSONO to adversarial training methods

1. Faster Convergence – Shorter training 

2. Superior robust performance

Adapting GTSONO on TRADES and 

Free Adversarial Training was found to provide:

Ablation Study on TRADES and

 Free Adversarial Training (FreeAT)



Results

3. Minimax DDP vs GDA with Hessian Precondition

 Recall open loop minimax DDP   Generalization of Preconditioned GDA 

Open loop DDP update rule in GTSONO was more robust, especially in large disturbances



Where do we go next?



Differentiable Robust MPC Architecture

Nominal MPC

Auxiliary MPC

High Level Task Objective

Trajectories

State-Space Representations(theta)

J1 Objective to Minimize(psi)

State-Space Representation(theta)

J2 Objective to Minimize(phi)



Differentiable Robust MPC with Perception 

Nominal MPC

Auxiliary MPC

High Level Task Objective

Trajectories

State Representations in Image Feature Space

J1 Objective to Minimize

Representation(theta)

J2 Objective to Minimize(phi)

Perception

Q1: How do we bring-in perception?

Q2: What is the state? Perceptual vs Mechanical States

Q3: 3D Cost Maps for Perception

Q4: Dynamic obstacles



Differentiable Robust MPC with Perception 

Nominal MPC

Auxiliary MPC

High Level Task Objective

Trajectories
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