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 Vehicles (Unmanned Air Systems UAS)
− Heterogenous, multi-speed

− Provide its own parameters (e.g. start and 

destination points, fuel, make, travel parameters 

(desired ETA etc) to aggregator

− report path conditions to the aggregator

−  provide control parameters to track path/time  

dictated by aggregator

Airspace Scenarios

 Traffic Management System (cloud based) 
− possibly distributed (sectorwise) or centralized

− decide network aspects – allow how many vehicles, 

which new airways to  open, etc. 

− assist individual UAS – relay perceived information, 

waypoint paths, etc. 

 Physical Space - Airspace 
− sequence of intersections:

− multi-input multi-output, flexible locations and 

geometry; multi-lane and bidirectional 

− air-corridors: 

− bidirectional and multi-lane; flexible locations 

and geometry; different UAV speeds; hovering 

or holding patterns are possible

 Ground Resources
− mobile or static landing stations

− service stations – recharging etc.
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High-Level Objectives

Intelligent Infrastructure and Logistics Support S r i n i v a s a  S a l a p a k a ,  U I U C

● abstract out planning/logistics problems

architectural details are evolving: focus on broader, more adaptable solutions

● develop cloud/web-based analytical and design tools for

Traffic Management Systems (TMS)

 Individual Unmanned Aerial Systems (UASs)   
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Objectives

Intelligent Infrastructure and Logistics Support S r i n i v a s a  S a l a p a k a ,  U I U C

● planning and logistic problems
 resource allocation, scheduling, routing  etc. with heterogeneous vehicles

− e.g., routing and scheduling of UAS (determine sequence of waypoints and schedule them for each UAS)
− e.g., resource allocation and scheduling: coverage by service stations, recharging schedules; service-vehicles schedules, etc.
− e.g., traffic-density design to avoid congestion, determining relative ratios of different types, speeds etc
− e.g., efficiency and robustness design of the UAS’s  speed profile for energy efficiency, time, and robustness to uncertainties,  minimizing (ideally 

eliminating) holding patterns; trade-off optimality vs robustness 
− e.g., respect constraints: communication constraints, capacity constraints, dynamic constraints, topographical constraints

● sensitivity analysis: with respect to network parameters 
− e.g., with traffic volume, traffic density, UAS-type configuration, # of facilities, facility-types, communication error and delays  etc.

 guide prioritization of resource allocation
 quantifying risk assessment and resilience - network's vulnerability to external disturbances or changes in operating conditions

● offline ML training: 
 learning from offline digital twin airspace simulation systems – identify meta-parameters etc.
 useful for contingency management, resilience and reliability studies,  advisory/suggesting for network and UAS  parameters, real-

time optimization and scalable studies.
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Example: Routing+Scheduling of Vehicles  

Intelligent Infrastructure and Logistics Support S r i n i v a s a  S a l a p a k a ,  U I U C

                                                                                                                             

𝜼𝒋|𝒊
𝒏 (𝒌) ∈ 𝟎, 𝟏 : is = 1 if 𝑛𝑡ℎ vehicle decides to 

go  from intersection 𝑖 at the 𝑘𝑡ℎ stage to 

intersection 𝑗 at the 𝑘 + 1 𝑡ℎ stage

 𝒕𝒋
𝒏 𝒌 : time required to reach 𝑗𝑡ℎ intersection  

at the 𝑘𝑡ℎ stage

which vehicle should cross which intersection when – minimize commute time

determine optimal routes – sequence of 
intersections

determine time spent between two successive 
intersections

Respect constraints – congestion (node 
capacity), speed, and  obstacle avoidance 
constraints. 

decision variables
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Other Planning/Logistic Examples:  

Intelligent Infrastructure and Logistics Support

S r i n i v a s a  S a l a p a k a ,  U I U C

● Routing+Scheduling:
 objective: determine routes and inter-node times to 

minimize the total weighted travel time over all UAS
 constraints: No UAS runs out of charge, congestion 

constraint

● Scheduling on predefined routes:
 objective: each drone has a mission (predefined 

sequence of nodes to go to).   schedule drones to 
minimize the total weighted travel time

 constraints: processing time constraint, precedence 
order constraint, and congestion constraint

● Routing+Resource Allocation:
 Objective: determine locations of charging stations to 

minimize total weighted time (distance) over all UAS
 Constraints: No UAS runs out of charge, obstacles are 

avoided

⋮
● Various other combinations

 UAS, charging UGVs, and destination targets.
 each drone: pre-defined charging capacity and 

an initial charge
 UAS can choose to go to the destination directly 

or via a subset of charging facilities to ensure 
battery capacity

𝑽𝟒
𝛿4

𝛿2

𝛿1, 𝛿3
𝒇𝟏 

𝒇𝟐

𝒇𝟑

𝑼𝑨𝑺
charging 

station

𝑽𝟑

𝑽𝟐

𝑽𝟏
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Abstraction: Parameterized Sequential Decision Making (Para-SDM) Problems

Intelligent Infrastructure and Logistics Support

S r i n i v a s a  S a l a p a k a ,  U I U C

5G Small Cell Network Design
Job-Shop SchedulingIndustrial Process Optimization

Hierarchical Clustering Markov Decision Processes

● Common Aspect:
 Simultaneous Sequential 

Decision Making and 

Parameter Optimization
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A General Framework

S r i n i v a s a  S a l a p a k a ,  U I U C

Statistical

Physics

Maximum

Entropy

Principle

Clustering, Data 

Classification, Network 

Aggregation,  Routing, 

Scheduling, Traveling 

Salesman Problems, 

Resource Allocation, …

Combinatorial Optimization 

Problems
 

PARA-SDM

Network Design and 

Planning problems, 

Supply Chain problems,  

MDPs, RL,  …

Machine

Learning

MDPs, RL
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Baseline Para-SDM: Facility Location with Path Optimization 

S r i n i v a s a  S a l a p a k a ,  U I U C

min
𝓨,𝜼(𝜸|𝒊)∈ 𝟎,𝟏 :

σ𝛾 𝜂(𝛾|𝑖)=1

𝐷 = ෍

𝑖=1

𝑁

𝜌𝑖 ෍

𝛾∈𝐺

𝜼(𝜸|𝒊)𝑑(𝑛𝑖 , 𝛾)

●  “find simultaneously optimal paths and facility 
locations”

 combinatorial configurations
▪ exponential # of paths 𝛾; 

▪ {𝜂(𝛾|𝑖)} is combinatorial

▪ continuum of facility locations 𝓨

  computationally complex
▪ non-convex, NP-hard

▪ sequential algorithms : sub-optimal

combinatorial viewpoint for para-SDMs

‘M’ Resources

Ω

𝑛𝑗

𝑛𝑖

𝑓3

𝑓2 𝑓1

‘N’ Sensors 

𝛿: Destination 
Location

● application example areas: supply-chain networks, 

sensor networks, last-mile delivery

● decision variables

 Path 𝜸: sequence of facilities from nodes 

to destination 𝑛𝑖 → 𝒇𝒓𝟏
→ 𝒇𝒓𝟐

→ ⋯ 𝒇𝒓𝒒
→ 𝜹

 Parameters 𝓨: facility locations 𝓨 ≔ {𝒚𝒋}
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Facility Location with Path Optimization: Baseline Para-SDM

S r i n i v a s a  S a l a p a k a ,  U I U C

Stages Illustration

𝑀 𝐽𝓨
𝜇

𝑠 = ෍

𝑡=0

𝑀

𝑑 𝑥𝑡(𝓨), 𝑥𝑡+1(𝓨)

subject to

 𝑥𝑡+1 = 𝜇 𝑎𝑡 𝑥𝑡 𝓨 ,  𝑥0 = 𝑠
+

 other constraints on states and 

actions

𝐽𝜇 𝑠 = ෍

𝑡=0

∞

𝑑𝑡 𝑥𝑡, 𝑥𝑡+1

subject to

 𝑥𝑡+1 = 𝜇 𝑎𝑡 𝑥𝑡 ,  𝑥0 = 𝑠
+

 other constraints on states and 

actions

 MDPs: Shortest Path Problems

  Para-SDMs: Shortest Path + Facility Location 
Problems
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Solve Shortest Path + Facility Location Problem: Baseline Para-SDM

Stages Illustration

𝑀

min
𝓨,𝜼(𝜸|𝒊)∈ 𝟎,𝟏 :

σ𝛾 𝑞(𝛾|𝑖)=1

𝐷 = ෍

𝑖=1

𝑁

𝜌𝑖 ෍

𝛾∈𝐺

𝜼(𝜸|𝒊)𝑑(𝑥𝑖 , 𝛾)

max
𝒴,{𝑝𝑘}

 𝐻 ≔ − ෍

𝑖=1

𝑁

𝜌𝑖 ෍

𝛾∈𝐺

ෑ

𝑘

𝑝𝑘 𝛾𝑘+1 𝛾𝑘  log ෑ

𝑘

𝑝𝑘 𝛾𝑘+1 𝛾𝑘

𝐷: = ෍

𝑖=1

𝑁

𝜌𝑖 ෍

𝛾∈𝐺

ෑ

𝑘

𝑝𝑘(𝛾𝑘+1|𝛾𝑘) 𝑑(𝑥𝑖 , 𝛾) = 𝑑0

subject to

− 𝜂(𝛾|𝑖) = ς𝑘=1
𝑀−1 𝜂𝑘(𝛾𝑘+1|𝛾𝑘) 

− 𝜂𝑘 𝛾𝑘+1 𝛾𝑘 = 1 if 𝛾𝑘 to 𝛾𝑘+1 𝜂𝑘 =
𝒪(𝑀3)

− Polynomial-order decision variables

A. Srivastava, and S. M. Salapaka. "Simultaneous Facility Location and Path Optimization in Static and Dynamic 

Networks." IEEE Transactions on Control of Network Systems 7.4 (2020): 1700-1711.

𝒑(𝜸|𝒊)

Free Energy  𝐹 = 𝐷 −
1

𝛽
𝐻

− 𝒑𝒌 𝜸𝒌+𝟏 𝜸𝒌 = 𝑒−𝛽𝑑𝑘

σ
𝛾𝑘+2

𝑀 𝑒−𝛽 σ𝑡=𝑘+1
𝑀 𝑑𝑡 𝛾𝑡,𝛾𝑡+1

σ
𝛾𝑘+1

𝑀 𝑒−𝛽 σ𝑡=𝑘
𝑀 𝑑𝑡 𝛾𝑡,𝛾𝑡+1

 Free Energy 

− 𝑭 = −
𝟏

𝜷
σ𝜸𝟎

𝒑𝜸𝟎
𝐥𝐨𝐠 σ𝜸𝟏,…,𝜸𝑴

𝒆−𝜷 σ𝒕=𝟎
𝑴 𝒅𝒕(𝜸𝒕,𝜸𝒕+𝟏)

 Facility Locations:  

− 𝓨 obtained from 
𝜕𝐹

𝜕𝓨
= 0

 Path Probabilities 𝒑(𝜸|𝒊) 

S r i n i v a s a  S a l a p a k a ,  U I U C

Annealing
• Minimize for every 𝛽 starting from 0 to ∞ (⟺ decreasing 𝑑0)
• 𝛽 = 0 ⇒  convex free energy ⇒ (Global minima =  uniform distribution)
• 𝛽 → ∞ ⇒ 𝑝 𝛾 𝛾0 → 𝜂 𝛾 𝛾0  ⇒  (hard associations = solution)
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Routing + Scheduling Problem 

Intelligent Infrastructure and Logistics Support S r i n i v a s a  S a l a p a k a ,  U I U C

● Scenario:
charging stations 

− processing time for UAS
𝑛𝑡ℎUAS 𝑽𝒏 = (ℓ𝟎

𝒏, ℓ𝒅
𝒏, 𝒄𝟎

𝒏, 𝑻𝒏 𝟎 , 𝑺𝒏, 𝑭. 𝑪. 𝑹𝒏)
− ℓ𝟎

𝒏, ℓ𝒅
𝒏: entry and exit location 

−  𝒄𝟎
𝒏: initial charge

− 𝑻𝒏 𝟎 : entry time
− 𝑭. 𝑪. 𝑹𝒏: full-charge range

● Objective: find simultaneously 
1. Shortest time paths (routes) for all UAS 
2. time each UAS spends in each corridor (in 

between successive intersections or facilities)

● Constraints: 
 UAS are never without charge
 avoid congestion at charging stations
 UAS within maximum speed

𝑽𝟒

𝛿4

𝛿2

𝛿1, 𝛿3
𝒇𝟏 

𝒇𝟐

𝒇𝟑

𝑼𝑨𝑺
charging 

station

𝑽𝟑

𝑽𝟐

𝑽𝟏
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Problem Statement: Routing + Scheduling in FLPO form

Intelligent Infrastructure and Logistics Support S r i n i v a s a  S a l a p a k a ,  U I U C

Stage Illustration for drone 𝒏

𝒕𝟏
𝒏 𝒕𝟏

𝒏 𝒕𝟏
𝒏𝒕𝟏

𝒏

𝒕𝟐
𝒏 𝒕𝟐

𝒏 𝒕𝟐
𝒏𝒕𝟐

𝒏

𝒕𝑴
𝒏 𝒕𝑴

𝒏 𝒕𝑴
𝒏𝒕𝑴

𝒏

Decision Variables

• 𝑡𝑗
𝑛  − Time taken to reach node j, 1 ≤ 𝑗 ≤ 𝑀

• 𝜂𝑗|𝑖
𝑛 𝑘 ∈ {0, 1}  −  𝑖 to 𝑗 transition in stage 𝑘

Total cost for a drone : 𝑫𝐧 =  𝑻𝒏 𝑲 + 𝑪𝒏(𝑲)

• Time taken : 𝑇𝑛 𝐾 = Π𝑘=0
𝐾  𝜂𝑗|𝑖

𝑛 𝑘 σ𝑘=0
𝐾 (𝑡𝑗(𝑘+1)

𝑛  − 𝑡𝑖 𝑘
𝑛 )

• Penalty incurred : 𝐶𝑛 𝐾 = Π𝑘=0
𝐾  𝜂𝑗|𝑖

𝑛 𝑘 σ𝑘=0
𝐾 𝑐𝑘

𝑛(𝑖, 𝑗)

• 𝑐𝑘
𝑛 𝑖, 𝑗 − penalty due to  constraints

Solution Approach Using the MEP Framework

𝐷 = min
𝑡𝑗

𝑛, 𝜂𝑗|𝑖
𝑛 (𝑘)

෍

𝑛

𝑝𝑛Π𝑘=0
𝐾  𝜂𝑗|𝑖

𝑛 𝑘 ෍

𝑘=0

𝐾

(𝑡𝑗(𝑘+1)
𝑛  − 𝑡𝑖 𝑘

𝑛 ) + 𝑐𝑘
𝑛

• Replace binary associations with a probability associations

0,1 ∋ 𝜂𝑗|𝑖
𝑛 → 𝑝𝑗|𝑖

𝑛 𝑘 ∈ 0, 1 , ∀𝑘

• Minimize free energy iteratively for 𝛽 > 0, 𝛽 = 𝜖 → ∞, 0 < 𝜖 ≪ 1 

𝐹 = min
𝑡𝑗

𝑛, 𝑝𝑗|𝑖
𝑛 (𝑘)

 𝐷 −  ൗ1
𝛽 𝐻, 

where 𝐻 = Π𝑘=0
𝐾 𝑝𝑗|𝑖

𝑛 𝑘 ෍

𝑘=0

𝐾

log 𝑝𝑗|𝑖
𝑛 (𝑘)

Annealing
• Minimize for every 𝛽 starting from 0 to ∞
• 𝛽 = 0 ⇒  convex free energy ⇒ (Global minima =  uniform distribution)
• 𝛽 → ∞ ⇒ 𝑝 𝛾 𝛾0 → 𝜂 𝛾 𝛾0  ⇒  (hard associations = solution)
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Obstacle consideration 

PTF = 2.0

PTF : processing time frame 
(charging time at each 
station)

PLAY THE VIDEO!
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Simulations: scheduling + routing + congestion avoidance

Intelligent Infrastructure and Logistics Support S r i n i v a s a  S a l a p a k a ,  U I U C

PTF = 4.0PTF = 0

Congestion 
happening 
at f1
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Routing + Facility (Charging Stations) Locations

Intelligent Infrastructure and Logistics Support S r i n i v a s a  S a l a p a k a ,  U I U C

● Scenario:

 charging stations (fixed locations)
− processing time for UAS

 𝑛𝑡ℎUAS 𝑽𝒏 = (ℓ𝟎
𝒏, ℓ𝒅

𝒏, 𝒄𝟎
𝒏, 𝑻𝒏 𝟎 , 𝑺𝒏, 𝑷𝑻𝑭𝒏, 𝑭. 𝑪. 𝑹𝒏)

− ℓ𝟎
𝒏, ℓ𝒅

𝒏: entry and exit location 

−  𝒄𝟎
𝒏: initial charge

− 𝑻𝒏 𝟎 : entry time

− 𝑺𝒏: maximum speed

− 𝑭. 𝑪. 𝑹𝒏: full-charge range

● Objective: find simultaneously locations of charging 

stations and shortest paths (routes) of UAS

●  Constraints: UAS are never without charge, avoid 

obstacles, threshold on number of UAS at a charging 

station at a given time.

𝑽𝟒
𝛿4

𝛿2

𝛿1, 𝛿3
𝒇𝟏 

𝒇𝟐

𝒇𝟑

𝑼𝑨𝑺
charging 

station

𝑽𝟑

𝑽𝟐

𝑽𝟏
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Problem Statement: Routing + Facility (Charging Stations) Locations

Intelligent Infrastructure and Logistics Support S r i n i v a s a  S a l a p a k a ,  U I U C

Battery constraint – 

obstacle constraint
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Simulations – Routing + Facility Locations 

Intelligent Infrastructure and Logistics Support S r i n i v a s a  S a l a p a k a ,  U I U C

Phase transition
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Simulations: (changing F.C.R.)

Intelligent Infrastructure and Logistics Support S r i n i v a s a  S a l a p a k a ,  U I U C

Drone1 --->f3 --->f2 --->[D1][D1]
Drone2 --->f3 --->f2 --->f1 --->[D2]
Drone3 --->f1 --->[D3][D3][D3]
Drone4 --->f1 --->f2 --->f3 --->[D4]
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Scheduling on pre-defined routes

Intelligent Infrastructure and Logistics Support S r i n i v a s a  S a l a p a k a ,  U I U C

● Scenario:

charging stations (fixed locations)

𝑛𝑡ℎUAS 𝑽𝒏 = (𝑻𝒏 𝟎 , 𝑺𝒏, 𝑳𝒏)
− 𝑳𝒏 = {ℓ𝟎

𝒏 ≺ ℓ𝟏
𝒏 ≺ ⋯ ≺ ℓ𝑲

𝒏 = ℓ𝒅
𝒏}

● Objective: schedule drones to minimize the total 

weighted travel time, to reach their destination 

● Constraints: 
 precedence order

 congestion constraint

 processing time constraint

 drone speed limits

𝑽𝟒
𝛿4

𝛿2

𝛿1, 𝛿3
𝒇𝟏 

𝒇𝟐

𝒇𝟑

𝑼𝑨𝑺
chargin

g 

station

𝑽𝟑

𝑽𝟐

𝑽𝟏
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Problem Statement: Scheduling on pre-defined routes

Intelligent Infrastructure and Logistics Support S r i n i v a s a  S a l a p a k a ,  U I U C

1

2

1- congestion constraint

2- max-speed constraint
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Problem Statement: Scheduling on Pre-defined routes in FLPO form

Intelligent Infrastructure and Logistics Support S r i n i v a s a  S a l a p a k a ,  U I U C

Stage Illustration for drone 𝒏

𝒕𝟏
𝒏 𝒕𝟏

𝒏 𝒕𝟏
𝒏𝒕𝟏

𝒏

𝒕𝟐
𝒏 𝒕𝟐

𝒏 𝒕𝟐
𝒏𝒕𝟐

𝒏

𝒕𝑴
𝒏 𝒕𝑴

𝒏 𝒕𝑴
𝒏𝒕𝑴

𝒏

Decision Variables

• 𝑡𝑗
𝑛  − Time taken to reach node j, 1 ≤ 𝑗 ≤ 𝑀

• 𝜂𝑗|𝑖
𝑛 𝑘 ∈ {0, 1}  −  𝑖 to 𝑗 transition in stage 𝑘 (Given)

Total cost for a drone : 𝑫𝐧 =  𝑻𝒏 𝑲 + 𝑪𝒏(𝑲)

• Time taken : 𝑇𝑛 𝐾 = Π𝑘=0
𝐾  𝜂𝑗|𝑖

𝑛 𝑘 σ𝑘=0
𝐾 (𝑡𝑗(𝑘+1)

𝑛  − 𝑡𝑖 𝑘
𝑛 )

• Penalty incurred : 𝐶𝑛 𝐾 = Π𝑘=0
𝐾  𝜂𝑗|𝑖

𝑛 𝑘 σ𝑘=0
𝐾 𝑐𝑘

𝑛(𝑖, 𝑗)

• 𝑐𝑘
𝑛 𝑖, 𝑗 − penalty due to inequality constraints

Solution Approach Using the MEP Framework

𝐷 = min
𝑡𝑗

𝑛
෍

𝑛

𝑝𝑛Π𝑘=0
𝐾  𝜂𝑗|𝑖

𝑛 𝑘 ෍

𝑘=0

𝐾

(𝑡𝑗(𝑘+1)
𝑛  − 𝑡𝑖 𝑘

𝑛 ) + 𝑐𝑘
𝑛

• Replace binary associations with a probability associations

0,1 ∋ 𝜂𝑗|𝑖
𝑛 → 𝑝𝑗|𝑖

𝑛 𝑘 ∈ 0, 1 , ∀𝑘

• Minimize free energy iteratively for 𝛽 > 0, 𝛽 = 𝜖 → ∞, 0 < 𝜖 ≪ 1 

𝐹 = min
{𝑝𝑗|𝑖

𝑛 𝑘 ,𝑡𝑗
𝑛}

 𝐷 − ൗ1
𝛽 𝐻, 

where 𝐻 = Π𝑘=0
𝐾 𝑝𝑗|𝑖

𝑛 𝑘 ෍

𝑘=0

𝐾

log 𝑝𝑗|𝑖
𝑛 (𝑘)

Annealing
• Minimize for every 𝛽 starting from 0 to ∞
• 𝛽 = 0 ⇒  convex free energy ⇒ (Global minima =  uniform distribution)
• 𝛽 → ∞ ⇒ 𝑝 𝛾 𝛾0 → 𝜂 𝛾 𝛾0  ⇒  (hard associations = solution)
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Problem Statement: Scheduling on pre-defined routs

Intelligent Infrastructure and Logistics Support S r i n i v a s a  S a l a p a k a ,  U I U C

Drone_list=[

[(1, 3)≺(2, 2)≺ (3, 2)]

[(1, 2)≺(3, 1)≺ (2, 4)],

[(2, 4)≺(3, 3)]
]

𝑫𝟏:

𝑫𝟐:

𝑫𝟑:

facility 

node
dwell

time
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Parameterized Sequence-Decision Making Problems

Expanding the Framework

Algorithm

Sensitivity and Robustness

Incorporating 
Constraints/Scalability

Dynamic Constraints
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Infinite Horizon and Learning in PARA-SDMs

S r i n i v a s a  S a l a p a k a ,  U I U C

𝐽𝜻𝜼
𝝁

𝑠 = 𝔼𝑝𝜇
෍

𝑡=0

∞

𝛼𝑡𝑐 𝑥𝑡 𝜻 , 𝑢𝑡 𝜼 , 𝑥𝑡+1 𝜻 |𝑥0 = 𝑠 = ෍

𝜔∈Ω

𝑝𝜇 𝜔 𝑠  ҧ𝑐(𝑠, 𝜔)

SDM 𝓜 = ⟨𝓢, 𝓐, 𝜻, 𝜼, 𝒄, 𝒑, 𝜶⟩ with cost-free termination state 𝛿

Infinite Horizon para-SDMs

● Generalizations

 Parameterized states and actions

 Para-SDMs: Shortest Path + Facility Location Problems

 Stochastic Dynamics: 

− transition probability: 𝒑 𝒔′ 𝒔, 𝒂
− stochastic policy: 𝝁(𝒂|𝒔)
− a realized path 𝜔 = (𝑎0, 𝑥1, 𝑎1, 𝑥2, ⋯ )

 Infinite horizon

 Para-RL: cost 𝑐 𝑠, 𝑎, 𝑠′  and dynamics 𝑝 𝑠′ 𝑠, 𝑎  not explicitly known

− 𝑝𝜇: 𝜔 → [0,1] and 𝜔 = 𝑎0, 𝑥1, 𝑎1, 𝑥2, …

− 𝑝𝜇 𝜔 𝑠 = 𝜇 𝑎0 𝑠 𝑝 𝑥1 𝑎0, 𝑠 𝜇 𝑎1 𝑥1 𝑝 𝑥2 𝑥1, 𝑎1 ⋯

− state, action parameters: 𝜁 = 𝜁𝑠 , 𝜂 = {𝜂𝑎}
− cost and dynamics: 𝑐 𝑠, 𝑎, 𝑠′ , 𝑝(𝑠′|𝑠, 𝑎) 
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Infinite Horizon and Learning in para-SDMs

S r i n i v a s a  S a l a p a k a ,  U I U C

Assume 𝜇𝑡 = 𝜇 and non-zero probability to reach 

terminal state  𝑝𝜇 𝜔 𝑥0 = ς𝑡=0
∞ 𝜇 𝑢𝑡 𝑥𝑡 𝑝(𝑥𝑡+1|𝑥𝑡 , 𝑢𝑡)

Theorem: The Lagrangian 𝑉𝛽
𝜇

(𝑠) for the optimization problem (1) satisfies the following recursive Bellman equation

𝑉𝛽
𝜇

𝑠 = ෍

𝑎,𝑠′

𝜇 𝑎 𝑠 𝑝 𝑠′ 𝑠, 𝑎 𝑐 𝑠′, 𝑎, 𝑠′ +
𝛼

𝛽
𝑙𝑜𝑔 𝜇 𝑎 𝑠 + 𝛼𝑉𝛽

𝜇
𝑠′ + 𝜆𝑠

𝜇𝛽
∗ 𝑎 𝑠 =

exp − ൗ𝛽
 𝛼 𝜦𝜷

∗ 𝒔, 𝒂

σ𝑎′ exp − ൗ𝛽
𝛼 Λ𝛽

∗ 𝑠, 𝑎′
Control policy

𝑉𝛽
𝜇

𝑠 = 𝔼 ෍

𝑡=0

∞

𝛼𝑡𝑐 𝑥𝑡, 𝑢𝑡, 𝑥𝑡+1 +
1

𝛽
log 𝜇 𝑢𝑡 𝑥𝑡

Lagrangian

𝜦𝜷 𝒔, 𝒂 = ෍

𝑠′∈𝒮

𝑝𝑠𝑠′
𝑎 ҧ𝑐𝑠𝑠′

𝑎 −
𝛼2

𝛽
log ෍

𝑎∈𝒜

exp −
𝛽

𝛼
𝜦𝜷 𝒔′, 𝒂  

[Theorem: Contraction Map]

Parameters 𝜻∗, 𝜼∗ 

෍

𝑠′∈𝒮

𝜕𝑉𝛽
∗(𝑠′)

𝜕𝜁𝑠
= 0 ෍

𝑠′∈𝒮

𝜕𝑉𝛽
∗(𝑠′)

𝜕𝜂𝑎
= 0

Srivastava, Amber, and Srinivasa M. Salapaka. "Parameterized MDPs and Reinforcement Learning Problems—

A Maximum Entropy Principle-Based Framework." IEEE Transactions on Cybernetics (2021).

𝑉𝛽
∗(𝑠) = −

𝛼

𝛽
log ෍

𝑎∈𝒜

exp −
𝛽

𝛼
𝜦𝜷

⋆ 𝒔, 𝒂  
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Infinite Horizon and Learning in para-SDMs (para-RL)

S r i n i v a s a  S a l a p a k a ,  U I U C

Model-free updates

Converges to state−action value function :  Ψ𝑡 → Λ𝛽
∗  at (𝜁, 𝜂)

𝜳𝒕+𝟏 𝒙𝒕, 𝒂𝒕 = 𝟏 − 𝝂𝒕 𝜳𝒕 𝒙𝒕, 𝒖𝒕 + 𝝂𝒕 𝒄𝒙𝒕𝒙𝒕+𝟏

𝒂𝒕 −
𝜶𝟐

𝜷
𝐥𝐨𝐠 ෍

𝒂′∈𝓐

𝒆𝒙𝒑
−𝜷

𝜶
𝜳𝒕 𝒙𝒕+𝟏, 𝒂′

Unknown dynamics and cost functions

Agent

Environment

𝑎𝑡

At time instant 𝑡

𝑐(𝑥𝑡, 𝑎𝑡, 𝑥𝑡+1), 𝑥𝑡+1

Observations:

𝜕𝑉𝛽
∗

𝜕𝜁
≈

𝑉𝛽
∗ 𝜁′ − 𝑉𝛽

∗(𝜁)

𝜁′ − 𝜁
෍

𝑠′∈𝒮

𝜕𝑉𝛽
∗(𝑠′)

𝜕𝜁𝑠
= 0Parameters:

Policy:

𝑘 + 1Γ𝑡 Γ𝑡+1

𝑐 𝑠, 𝑎, 𝑠′ , 𝑝(𝑠′|𝑠, 𝑎)
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Sensitivity and Robustness

Srivastava, Amber, and Srinivasa M. Salapaka. "Robustness Analysis for Simultaneous Resource Allocation and Route Optimization Problems." Dynamic Systems and Control Conference. 

Vol. 58288. American Society of Mechanical Engineers, 2017.

● Sensitivity:
 Free-energy 𝑉𝛽(𝑠): smooth approximation of non-smooth 𝐽(𝑠)

− 𝑉𝛽 𝑠, 𝜃 = −
𝛼

𝛽
log σ𝑎 exp(−

𝛽

𝛼
Λ𝛽(𝑠, 𝑎, 𝜃)  

− 𝜃 : parameter;  Sensitivity analysis 
𝜕𝑉𝛽

𝜕𝜃

● Robustness: 
e.g., uncertainty in coordinates of UAS given 𝜈 𝑥 𝑖 ;replace the distance by 

modified distance

 𝑑′ 𝑥𝑖 , 𝑦𝑗 = σ𝑥 𝜈 𝑥 𝑖 𝑑(𝑥, 𝑦𝑗)

number of UAS required for adequate coverage
− exploit phase transition property
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Sensitivity plots with respect to different parameters
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Incorporating Capacity and Exclusion-Inclusion Constraints

• Constraints in Network Design

• Partially Connected Network

• Capacity constraints on Facilities

• Link capacity constraints

Restricted action 

space 𝒜𝑠

Capacity of a 

state 𝑠 ∈ 𝒮.

Partially connected 

network FLPO

𝑓1𝑓2, 𝑓4𝑓1, 𝑓2𝑓3, 𝑓4f5, 𝑓5𝑓3

Link capacity 

constraints

𝑓3𝑓4, 𝑓1𝑓4, 𝑓5𝑓4, 𝑓2𝑓4

Facility capacity 

constraints

𝑓1: 𝑓2: 𝑓3: 𝑓4: 𝑓5

𝜇 𝑎 𝑠 =
𝑤𝑎𝑠 exp −

𝛽
𝛼

Λ𝛽 𝑠, 𝑎

σ𝑎′ 𝑤𝑎′𝑠 exp −
𝛽
𝛼

Λ𝛽 𝑠, 𝑎′

Quantify # of visits to 𝑠′ 
 𝐶 𝑠′ = σ𝑠,𝑎 𝑝𝑠𝑠′

𝑎 𝜇(𝑎|𝑠)

𝑉𝛽
𝜇

𝑠′ + 𝜈𝑠′ 𝐶 𝑠′ − 𝑐𝑠′

𝐶 𝑠, 𝑠′ = ෍

𝑎

𝑝𝑠𝑠′
𝑎  𝜇(𝑎|𝑠)

Capacity of 

transitions 𝑠 to 𝑠′

Unconstrained 

(FLPO)
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Scalability

• Function Approximator (ANN) ෡Λ𝛽 𝑠, 𝑎; 𝐰 ≈ Λ𝛽
∗ (𝑠, 𝑎)

• Address para-SDM in large state and action spaces.

• Feature: para-SDM algorithm is parallelizable

𝜁+ = 𝜁 − 𝜏
𝜕𝑉𝛽

∗

𝜕𝜁
 ;  where 

𝜕𝑉𝛽
∗

𝜕𝜁
≈

𝑉𝛽
∗ 𝜁′ −𝑉𝛽(𝜁)

𝜁′−𝜁

 𝑉𝛽
∗ 𝜁′  → ෡Λ𝛽,𝜁′ 𝑠, 𝑎; 𝐰′

 𝑉𝛽
∗ 𝜁  → ෡Λ𝛽,𝜁(𝑠, 𝑎; 𝐰) 

𝛿

𝐵𝜁 ෡Λ𝛽,𝜁 in 𝐵𝜁 

‘N’ parallel agents min
𝜁∈𝐵𝜁

𝑉𝛽(𝜁)

Optimize 𝜁

2 parallel 

agents

Urbana city data : 2200 user nodes

Allocated : 10 small cells
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Conclusion

Para-SDMs

Network Design Data 

Clustering/ 

Classification

Markov Decision 

Processes

Industrial Process 

Optimization
Airspace Planning 

and Logistics

Framework  - Additional Capabilities

Capacity Constraints
Inclusion/Exclusion 

Constraints
Dynamic Constraints

Sensitivity Analysis Robustness/Uncertainty

Resource 

Allocation

Vehicle 

Routing

Travelling 

Salesman

Last Mile 

Delivery
Facility Location 

Problem

Drying Bed 

Optimization

Job-shop 

scheduling

Applications

Spatio-

Temporal 

Monitoringa common platform for combinations of 

these problems

AI/ML/Digital Twins

32/33



Thank You

Salar Basiri

UIUC

Dhananjay Tiwari

UIUC

Amber 

Srivastava

IIT Delhi, India

Mustafa Kapadia

Cummins Inc

33/33


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28: Sensitivity and Robustness
	Slide 29: Sensitivity plots with respect to different parameters
	Slide 30: Incorporating Capacity and Exclusion-Inclusion Constraints
	Slide 31: Scalability
	Slide 32: Conclusion
	Slide 33

