Airspace Management System Framework for Planning and Logistics

Srinivasa Salapaka Department of Mechanical Science and Engineering University of Illinois Urbana-Champaign

August 11, 2023

NASA

AND TECHNICAL STATE UNIVERSITY University of Nevada, Reno

Credits: NASA / Lillian Gipson

Airspace Scenarios

***** Physical Space - Airspace

– sequence of intersections:

- multi-input multi-output, flexible locations and geometry; multi-lane and bidirectional
- air-corridors:
- bidirectional and multi-lane; flexible locations and geometry; different UAV speeds; hovering or holding patterns are possible

***** Traffic Management System (cloud based)

- possibly distributed (sectorwise) or centralized
- decide network aspects allow how many vehicles, which new airways to open, etc.
- assist individual UAS relay perceived information, waypoint paths, etc.

*** Ground Resources**

- mobile or static landing stations
- service stations recharging etc.

★ Vehicles (Unmanned Air Systems UAS)

- Heterogenous, multi-speed
- Provide its own parameters (e.g. start and destination points, fuel, make, travel parameters (desired ETA etc) to aggregator
- report path conditions to the aggregator
- provide control parameters to track path/time dictated by aggregator

abstract out planning/logistics problems

* architectural details are evolving: focus on broader, more adaptable solutions

• develop cloud/web-based analytical and design tools for

- ★ Traffic Management Systems (TMS)
- ★ Individual Unmanned Aerial Systems (UASs)

planning and logistic problems

- ★ resource allocation, scheduling, routing etc. with heterogeneous vehicles
 - e.g., routing and scheduling of UAS (determine sequence of waypoints and schedule them for each UAS)
 - e.g., resource allocation and scheduling: coverage by service stations, recharging schedules; service-vehicles schedules, etc.
 - e.g., traffic-density design to avoid congestion, determining relative ratios of different types, speeds etc
 - e.g., efficiency and robustness design of the UAS's speed profile for energy efficiency, time, and robustness to uncertainties, minimizing (ideally eliminating) holding patterns; trade-off optimality vs robustness
 - e.g., respect constraints: communication constraints, capacity constraints, dynamic constraints, topographical constraints

• **sensitivity analysis:** with respect to network parameters

- e.g., with traffic volume, traffic density, UAS-type configuration, # of facilities, facility-types, communication error and delays etc.
- ***** guide **prioritization of resource allocation**
- * quantifying risk assessment and resilience network's vulnerability to external disturbances or changes in operating conditions

• offline ML training:

- ★ learning from offline digital twin airspace simulation systems identify meta-parameters etc.
- * useful for contingency management, resilience and reliability studies, advisory/suggesting for network and UAS parameters, realtime optimization and scalable studies.

Example: Routing+Scheduling of Vehicles

* which vehicle should cross which intersection when – minimize commute time

- determine optimal routes sequence of intersections
- determine time spent between two successive intersections
- Respect constraints congestion (node capacity), speed, and obstacle avoidance constraints.

★ decision variables

 $\eta_{j|i}^{n}(k) \in \{0, 1\}$: is = 1 if n^{th} vehicle decides to go from intersection *i* at the k^{th} stage to intersection *j* at the $(k + 1)^{th}$ stage $t_{j}^{n}(k)$: time required to reach j^{th} intersection at the k^{th} stage

Other Planning/Logistic Examples:

- ★ UAS, charging UGVs, and destination targets.
- ★ each drone: pre-defined charging capacity and an initial charge
- ★ UAS can choose to go to the destination directly or via a subset of charging facilities to ensure battery capacity

• Routing+Scheduling:

- * objective: determine routes and inter-node times to minimize the total weighted travel time over all UAS
- ★ constraints: No UAS runs out of charge, congestion constraint

Scheduling on predefined routes:

- * objective: each drone has a mission (predefined sequence of nodes to go to). schedule drones to minimize the total weighted travel time
- * constraints: processing time constraint, precedence order constraint, and congestion constraint

Routing+Resource Allocation:

- * Objective: determine locations of charging stations to minimize total weighted time (distance) over all UAS
 Constraints: No UAS runs out of charge, obstacles are
- avoided
- Various other combinations

Abstraction: Parameterized Sequential Decision Making (Para-SDM) Problems

A General Framework

Combinatorial Optimization Problems

Clustering, Data Classification, Network Aggregation, Routing, Scheduling, Traveling Salesman Problems, Resource Allocation, ...

PARA-SDM

Network Design and Planning problems, Supply Chain problems, MDPs, RL, ...

Baseline Para-SDM: Facility Location with Path Optimization

• "find simultaneously optimal paths and facility locations"

 application example areas: supply-chain networks, sensor networks, last-mile delivery

- decision variables
 - * **Path** γ : sequence of facilities from nodes to destination $n_i \rightarrow f_{r_1} \rightarrow f_{r_2} \rightarrow \cdots f_{r_q} \rightarrow \delta$
 - ***** Parameters \mathcal{Y} : facility locations $\mathcal{Y} \coloneqq \{y_j\}$

***** combinatorial configurations

- exponential # of paths γ ;
- $\{\eta(\gamma|i)\}$ is combinatorial
- continuum of facility locations y

***** computationally complex

- non-convex, NP-hard
- sequential algorithms : sub-optimal

*** combinatorial viewpoint** for para-SDMs

Facility Location with Path Optimization: Baseline Para-SDM

$$J^{\mu}(s) = \sum_{t=0}^{\infty} d_t(x_t, x_{t+1})$$

subject to
$$x_{t+1} = \mu(a_t | x_t), \ x_0 = s$$

+ other constraints on states and actions

*** MDPs: Shortest Path Problems**

* Para-SDMs: Shortest Path + Facility Location Problems

Solve Shortest Path + Facility Location Problem: Baseline Para-SDM

A. Srivastava, and S. M. Salapaka. "Simultaneous Facility Location and Path Optimization in Static and Dynamic Networks." *IEEE Transactions on Control of Network Systems* 7.4 (2020): 1700-1711.

• Scenario:

- * charging stations
 - processing time for UAS
- $\star n^{th} \bigcup \mathsf{AS} V^n = (\ell_0^n, \ell_d^n, c_0^n, T^n(0), S^n, F. C. R^n)$
 - $-\ell_0^n, \ell_d^n$: entry and exit location
 - c_0^n : initial charge
 - $-T^{n}(0)$: entry time
 - F.C.Rⁿ: full-charge range
- Objective: find simultaneously
- 1. Shortest time paths (routes) for all UAS
- 2. time each UAS spends in each corridor (in between successive intersections or facilities)
- Constraints:
 - *** UAS are never without charge**
 - \star avoid congestion at charging stations
 - *** UAS within maximum speed**

Problem Statement: Routing + Scheduling in FLPO form

Decision Variables

- t_j^n Time taken to reach node j, $1 \le j \le M$
- $\eta_{j|i}^{n}(k) \in \{0, 1\} i$ to j transition in stage k

Total cost for a drone : $D^n = T^n(K) + C^n(K)$

• Time taken :
$$T^n(K) = \prod_{k=0}^K \eta_{j|i}^n(k) \sum_{k=0}^K (t_{j(k+1)}^n - t_{i(k)}^n)$$

• Penalty incurred :
$$C^n(K) = \prod_{k=0}^K \eta_{j|i}^n(k) \sum_{k=0}^K c_k^n(i,j)$$

• $c_k^n(i,j)$ – penalty due to constraints

Solution Approach Using the MEP Framework

$$D = \min_{t_j^n, \eta_{j|i}^n(k)} \sum_n p_n \prod_{k=0}^K \eta_{j|i}^n(k) \sum_{k=0}^K (t_{j(k+1)}^n - t_{i(k)}^n) + c_k^n$$

Replace binary associations with a probability associations

$$[0,1\} \ni \eta_{j|i}^n \to p_{j|i}^n(k) \in [0,1], \forall k$$

• Minimize free energy iteratively for $\beta > 0$, $\beta = \epsilon \rightarrow \infty$, $0 < \epsilon \ll 1$

$$F = \min_{\substack{t_j^n, p_{j|i}^n(k)}} D - \frac{1}{\beta} H,$$

where $H = \prod_{k=0}^K p_{j|i}^n(k) \sum_{k=0}^K \log p_{j|i}^n(k)$

Annealing

- Minimize for every β starting from 0 to ∞
- $\beta = 0 \Rightarrow$ convex free energy \Rightarrow (Global minima = uniform distribution)
- $\beta \to \infty \Rightarrow [p(\gamma|\gamma_0) \to \eta(\gamma|\gamma_0)] \Rightarrow (hard associations = solution)$

Simulations: scheduling + routing + congestion avoidance

PTF : processing time frame (charging time at each station) PTF = 2.0

PLAY THE VIDEO!

Simulations: scheduling + routing + congestion avoidance

• Scenario:

- charging stations (fixed locations)
 - processing time for UAS
- * n^{th} UAS $V^n = (\ell_0^n, \ell_d^n, c_0^n, T^n(0), S^n, PTF^n, F. C. R^n)$
 - ℓ_0^n , ℓ_d^n : entry and exit location
 - c_0^n : initial charge
 - $T^n(0)$: entry time
 - Sⁿ: maximum speed
 - F.C.Rⁿ: full-charge range
- Objective: find simultaneously locations of charging stations and shortest paths (routes) of UAS
- Constraints: UAS are never without charge, avoid obstacles, threshold on number of UAS at a charging station at a given time.

Problem Statement: Routing + Facility (Charging Stations) Locations

Decision Variables:

 $\eta_i^n(k) \in \{0,1\}^{L \times N \times K}:$

1 if the n^{th} vehicle goes to the node j at the k^{th} step, otherwise 0. $y_j \in \mathbb{R}^{L \times r}$:

The r dimensional coordinates of the nodes.

Parameters:

 $p_n \in \begin{bmatrix} 0 & 1 \end{bmatrix}$: relative importance of the n^{th} vehicle.

 \bar{S}^n : maximum speed of the n^{th} vehicle.

 $l^n(k)$: location (node id) of the n^{th} vehicle at step k.

 $D^n(k)$: Total distance traversed by the n^{th} vehicle at step k.

 c_0^n : initial battery charge of the n^{th} vehicle.

 $c^n(k)$: battery charge of the n^{th} vehicle at step k.

 $R^{n}(c)$: range of the n^{th} vehicle with a battery charge c.

 $d(\cdot, \cdot)$: distance function between two spatial nodes.

 $\Gamma(\cdot, \cdot)$: obstacle-aware penalty function between two nodes.

 $V^{n}: (l_{0}^{n}, l_{d}^{n}, c_{0}^{n})$

$$\begin{split} \min_{\eta,y} \sum_{n} p_{n} D^{n}(K) \\ \text{s.t} \quad l^{n}(0) &= l_{0}^{n} \quad \forall n \\ l^{n}(k) &= l_{d}^{n} \quad \forall n, k \geq K \\ D^{n}(0) &= 0 \quad \forall n \\ l^{n}(k+1) &= \sum_{j=1}^{L} \eta_{j}^{n}(k) l_{j} \quad \forall n, k \quad l_{j} \in \{1, \dots, L\} \\ D^{n}(k+1) &= D^{n}(k) + d^{*}(l^{n}(k+1), l^{n}(k)) \quad \forall n, k \\ R^{n}(c^{n}(k)) &\geq d^{*}(l^{n}(k+1), l^{n}(k))) \quad \forall n, k \\ R^{n}(c^{n}(k)) &\geq d^{*}(l^{n}(k+1), l^{n}(k))) \quad \forall n, k \\ \text{where:} \quad d^{*}(\cdot, \cdot) &= d(\cdot, \cdot) + \Gamma(\cdot, \cdot) \\ d(i, j) &= \sqrt{(y_{i} - y_{j})^{\intercal}(y_{i} - y_{j})} \end{split}$$

Simulations – Routing + Facility Locations

Simulations: (changing F.C.R.)

AVIATE

CENTER

• Scenario:

* charging stations (fixed locations) * n^{th} UAS $V^n = (T^n(0), S^n, L^n)$ $- L^n = \{\ell_0^n \prec \ell_1^n \prec \cdots \prec \ell_K^n = \ell_d^n\}$

- Objective: schedule drones to minimize the total weighted travel time, to reach their destination
- Constraints:
 - \star precedence order
 - ***** congestion constraint
 - ***** processing time constraint
 - *** drone speed limits**

Problem Statement: Scheduling on pre-defined routes

Decision Variables: $\delta\theta^n(k) \in \mathbb{R}^{N \times K}$: The time interval for the transition of the n^{th} vehicle at the k^{th} step. **Parameters:** $p_n \in [0 \quad 1]$: relative importance of the n^{th} vehicle. \bar{S}^n : maximum speed of the n^{th} vehicle. $l^n(k)$: location (node id) of the n^{th} vehicle at step k. $L^n = [l^n(k)] \quad \forall k \leq K$: given route for each vehicle. T_0^n : clock time of deployment for the n^{th} vehicle. $T^n(k)$: clock time of the n^{th} vehicle at step k. $d(\cdot, \cdot)$: distance function between two spatial nodes. $\Gamma(\cdot, \cdot)$: obstacle-aware penalty function between two nodes. $f^n(\cdot)$: processing time function of the n^{th} vehicle on a given node.

 $V^n: (L^n, T^n_0, \bar{S}^n)$

$$\begin{split} \min_{\eta,\delta t} \sum_{n} p_{n} T^{n}(K) \\ \text{s.t} \quad T^{n}(k+1) &= T^{n}(k) + \delta t^{n}(k) \quad \forall n, k \\ |T^{n}(k) - T^{m}(k)| &> T^{*} \quad \text{if:} \quad l^{n}(k) = l^{m}(k) = l^{*} \quad \forall n, m, k \\ \text{where} \quad T^{*} &= \begin{cases} f^{n}(l^{*}) & \text{if} \quad T^{n}(k) \leq T^{m}(k), \\ f^{m}(l^{*}) & \text{else} \end{cases} \\ \hline \delta t^{n}(k) &\geq \frac{1}{S^{n}} (d(l^{n}(k+1), l^{n}(k)) + \Gamma(l^{n}(k+1), l^{n}(k))) \quad \forall n, k \end{cases} \end{split}$$

1- congestion constraint 2- max-speed constraint

Problem Statement: Scheduling on Pre-defined routes in FLPO form

Decision Variables

- t_j^n Time taken to reach node j, $1 \le j \le M$
- $\eta_{j|i}^{n}(k) \in \{0, 1\} i$ to *j* transition in stage *k* (Given)

Total cost for a drone : $D^n = T^n(K) + C^n(K)$

• Time taken :
$$T^n(K) = \prod_{k=0}^K \eta_{j|i}^n(k) \sum_{k=0}^K (t_{j(k+1)}^n - t_{i(k)}^n)$$

• Penalty incurred :
$$C^n(K) = \prod_{k=0}^K \eta_{j|i}^n(k) \sum_{k=0}^K c_k^n(i,j)$$

• $c_k^n(i, j)$ – penalty due to inequality constraints

Solution Approach Using the MEP Framework

$$D = \min_{t_j^n} \sum_n p_n \prod_{k=0}^K \eta_{j|i}^n(k) \sum_{k=0}^K (t_{j(k+1)}^n - t_{i(k)}^n) + c_k^n$$

Replace binary associations with a probability associations

$$\{0,1\} \ni \eta_{j|i}^n \to p_{j|i}^n(k) \in [0,1], \forall k$$

• Minimize free energy iteratively for $\beta > 0$, $\beta = \epsilon \rightarrow \infty$, $0 < \epsilon \ll 1$

$$F = \min_{\{p_{j|i}^{n}(k), t_{j}^{n}\}} D - \frac{1}{\beta} H,$$

where $H = \prod_{k=0}^{K} p_{j|i}^{n}(k) \sum_{k=0}^{K} \log p_{j|i}^{n}(k)$

Annealing

- Minimize for every β starting from 0 to ∞
- $\beta = 0 \Rightarrow$ convex free energy \Rightarrow (Global minima = uniform distribution)
- $\beta \to \infty \Rightarrow [p(\gamma|\gamma_0) \to \eta(\gamma|\gamma_0)] \Rightarrow (hard associations = solution)$

Problem Statement: Scheduling on pre-defined routs

Parameterized Sequence-Decision Making Problems Expanding the Framework

Infinite Horizon and Learning in PARA-SDMs

Infinite Horizon para-SDMs

SDM $\mathcal{M} = \langle \mathcal{S}, \mathcal{A}, \zeta, \eta, c, p, \alpha \rangle$ with cost-free termination state δ

$$J^{\boldsymbol{\mu}}_{\boldsymbol{\zeta}\boldsymbol{\eta}}(s) = \mathbb{E}_{p_{\boldsymbol{\mu}}}\left[\sum_{t=0}^{\infty} \alpha^{t} c\big(x_{t}(\boldsymbol{\zeta}), u_{t}(\boldsymbol{\eta}), x_{t+1}(\boldsymbol{\zeta})\big) \, | x_{0} = s\right] = \sum_{\omega \in \Omega} p_{\boldsymbol{\mu}}(\omega|s) \ \bar{c}(s, \omega)$$

$$- p_{\mu}: \omega \to [0,1] \text{ and } \omega = (a_0, x_1, a_1, x_2, ...) - p_{\mu}(\omega|s) = \mu(a_0|s)p(x_1|a_0, s)\mu(a_1|x_1)p(x_2|x_1, a_1) \cdots$$

- state, action parameters: $\zeta = \{\zeta_s\}, \eta = \{\eta_a\}$
- cost and dynamics: c(s, a, s'), p(s'|s, a)

- Generalizations
 - ★ Parameterized states and actions
 - * Para-SDMs: Shortest Path + Facility Location Problems
 - ***** Stochastic Dynamics:
 - transition **probability**: p(s'|s, a)
 - stochastic **policy:** $\mu(a|s)$
 - a realized path $\omega = (a_0, x_1, a_1, x_2, \cdots)$
 - ***** Infinite horizon
 - *** Para-RL:** cost c(s, a, s') and dynamics p(s'|s, a) not explicitly known

Infinite Horizon and Learning in para-SDMs

agrangian
$$V_{\beta}^{\mu}(s) = \mathbb{E}\left[\sum_{t=0}^{\infty} \alpha^{t} c(x_{t}, u_{t}, x_{t+1}) + \frac{1}{\beta} \log \mu(u_{t}|x_{t})\right]$$

Assume $\mu_t = \mu$ and non-zero probability to reach terminal state $p_{\mu}(\omega|x_0) = \prod_{t=0}^{\infty} \mu(u_t|x_t) p(x_{t+1}|x_t, u_t)$

Theorem: The Lagrangian $V^{\mu}_{\beta}(s)$ for the optimization problem (1) satisfies the following recursive Bellman equation

$$V_{\beta}^{\mu}(s) = \sum_{a,s'} \mu(a|s) p(s'|s,a) \left(c(s',a,s') + \frac{\alpha}{\beta} \log \mu(a|s) + \alpha V_{\beta}^{\mu}(s') \right) + \lambda_{\beta}$$

$$\text{Control policy} \quad \mu_{\beta}^{*}(a|s) = \frac{\exp\left\{-\left(\frac{\beta}{\alpha}\right)\Lambda_{\beta}^{*}(s,a)\right\}}{\sum_{a'}\exp\left\{-\left(\frac{\beta}{\alpha}\right)\Lambda_{\beta}^{*}(s,a')\right\}} \qquad \qquad V_{\beta}^{*}(s) = -\frac{\alpha}{\beta}\log\left(\sum_{a\in\mathcal{A}}\exp\left\{-\frac{\beta}{\alpha}\Lambda_{\beta}^{*}(s,a)\right\}\right)$$

$$\boldsymbol{\Lambda_{\beta}(s,a)} = \sum_{s' \in \mathcal{S}} p_{ss'}^{a} \left[\bar{c}_{ss'}^{a} - \frac{\alpha^{2}}{\beta} \log \left(\sum_{a \in \mathcal{A}} \exp \left\{ -\frac{\beta}{\alpha} \boldsymbol{\Lambda_{\beta}(s',a)} \right\} \right) \right]$$
Parameters $\boldsymbol{\zeta}^{*}, \boldsymbol{\eta}^{*}$
Solution Solution Parameters $\boldsymbol{\zeta}^{*}, \boldsymbol{\eta}^{*}$
Solution Solution Solution

Srivastava, Amber, and Srinivasa M. Salapaka. "Parameterized MDPs and Reinforcement Learning Problems— A Maximum Entropy Principle-Based Framework." IEEE Transactions on Cybernetics (2021).

Infinite Horizon and Learning in para-SDMs (para-RL)

• Sensitivity:

★ Free-energy $V_{\beta}(s)$: smooth approximation of non-smooth J(s)

$$-V_{\beta}(s,\theta) = -\frac{\alpha}{\beta} \log \left(\sum_{a} \exp(-\frac{\beta}{\alpha} \Lambda_{\beta}(s,a,\theta)) \right)$$

 $-\theta$: parameter; Sensitivity analysis $\frac{\partial V_{\beta}}{\partial \theta}$

• Robustness:

★ e.g., uncertainty in coordinates of UAS given v(x|i); replace the distance by modified distance

$$d'(x_i, y_j) = \sum_x \nu(x|i) d(x, y_j)$$

- ★ number of UAS required for adequate coverage
 - exploit phase transition property

Sensitivity plots with respect to different parameters

Sensitivity to UGV factor

Sensitivity to initial battery charges

Sensitivity to average speed limit

Sensitivity to penalty function drift

Incorporating Capacity and Exclusion-Inclusion Constraints

- Constraints in Network Design
- Partially Connected Network
- Capacity constraints on Facilities
- Link capacity constraints

Partially connected 6 network FLPO f_1f_2 , f_4f_1 , f_2f_3 , f_4f_5 , f_5f_3 4

Restricted action space \mathcal{A}_s

cted
O
f₅, f₅f₃ 4
tion

$$\mu(a|s) = \frac{w_{as} \exp\left\{-\frac{\beta}{\alpha}\Lambda_{\beta}(s,a)\right\}}{\sum_{a'} w_{a's} \exp\left\{-\frac{\beta}{\alpha}\Lambda_{\beta}(s,a')\right\}}$$

 $\delta \triangle$

Facility capacity constraints $f_1: f_2: f_3: f_4: f_5$ Capacity of a

state $s \in S$.

Scalability

- Function Approximator (ANN) $\widehat{\Lambda}_{\beta}(s, a; \mathbf{w}) \approx \Lambda_{\beta}^{*}(s, a)$
- Address para-SDM in large state and action spaces.
- Feature: para-SDM algorithm is parallelizable

Urbana city data : 2200 user nodes Allocated : 10 small cells

Conclusion

Salar Basiri UIUC

Dhananjay Tiwari UIUC

Mustafa Kapadia Cummins Inc Amber Srivastava IIT Delhi, India

Thank You