
V e r i f i c a t i o n a n d C e r t i f i c a t i o n S a y a n M i t r a

Code-Level Verification for Autonomy (TC2)

Robust and Resilient Autonomy for Advanced Air Mobility

Yangge Li and Lin Song

Haoqing Zhu, Katherine Braught, Keyi Shen

Sayan Mitra & Chuchu Fan
University of Illinois Urbana-Champaign and

Massachusetts Institute of Technology
March 24, 2023

Credits: NASA / Lillian Gipson

V e r i f i c a t i o n a n d C e r t i f i c a t i o n S a y a n M i t r a

Outline

Introduction to Verse verification tool
https://github.com/AutoVerse-ai/Verse-library
• Quadrotor example

• Demo

Background theory: Data-driven verification

• Reachability and sensitivity

Applications

• L1 Adaptive control [Lin Song et al., ICCPS WIP ’23]

• DNN control [Puthumanaillam, Ornik, et al.]

• RL air-traffic management [Peng Wei, GWU, ongoing]

• Parallel Verse [Zhu, et al.]

V e r i f i c a t i o n a n d C e r t i f i c a t i o n S a y a n M i t r a

https://github.com/AutoVerse-ai/Verse-library

Input
System + Requirements
Multi-agent hybrid scenarios + Invariance / safety

Output
Counter-example or
Proof that all behaviors of the System meet Requirements

Basic Verse Approach
Probabilistic sensitivity analysis +
Deterministic reachability analysis

Advanced Approaches
Parallelized verification
Incremental verification
Verification with neural network controllers

Verification problem and the Verse tool

V e r i f i c a t i o n a n d C e r t i f i c a t i o n S a y a n M i t r a

z

y

x

V e r i f i c a t i o n a n d C e r t i f i c a t i o n S a y a n M i t r a

Drones flying along three parallel vertically
separated straight tracks

Scenario in Verse defined by a set of agents, a
map, and a sensor

Maps define sequences of waypoints or
motion primitives

Sensors specify information available to one
agent about other agents

Agent: Decision logic + Dynamics

o 6D model + Bang-bang controller

o 18D model + L1 controller

Creating scenarios in Verse --- quick and easy

z

y

x

V e r i f i c a t i o n a n d C e r t i f i c a t i o n S a y a n M i t r a

Writing Decision Logic
Informal logic: “Nondeterministically
switch to track above or below if too
close to any other drone in the same
track”

Decision Logic (DL) modifies agent’s
mode written in Python

If exists multiple possible transitions,
both will be explored

Using any and all to quantify over other
agents in the scenario

DL supports user defined functions

Safety specified using python asserts (no
need to learn new logics)

V e r i f i c a t i o n a n d C e r t i f i c a t i o n S a y a n M i t r a

Verse under the hood

6

6

Learning sensitivity from

data [Fan CAV17]

Reachability,

composition,

fixpoints

Learning reachability

functions [Sun TACAS22]

Exploiting symmetries in

dynamics

[Sibai CAV21, TACAS19]

transition structure

extracted

+

Black-box

physics

simulator

Transition logic
Executable access

to mode dynamics
Scenario

Decision logic

Multi-agent interactions Core hybrid verification algorithms

V e r i f i c a t i o n a n d C e r t i f i c a t i o n S a y a n M i t r a

Verse scenario to hybrid system

Consider a scenario SC with k agents,

Agent i has:

o Continuous state space Xi

o Mode space Di

o Guard Gi and reset Ri extracted from Decision Logic. For a pair of modes d, d′ ∈ Di
• Gi d, d

′ ⊆ ςj Xj defines transition condition

• R𝑖 d, d
′ :ςj Xj → Xi defines change of continuous state after transition

o Flow function Fi: Xi × D × ℝ≥0 → Xi

V e r i f i c a t i o n a n d C e r t i f i c a t i o n S a y a n M i t r a

Hybrid system H SC = ⟨X, X0, D, d0, G, R, TL⟩ from composition of agents

Continuous state space X = ςkXi
o An element x ∈ X is called a state; X0: set of initial states

Mode space D = ςkDi

o An element d ∈ D is called a mode. 𝑑0: an initial mode

For a pair of modes d, d′ ∈ D

o guard G d, d′ ⊆ X, x ∈ 𝐺(𝑑, 𝑑′) iff x ∈ 𝐺𝑖(𝑑𝑖, 𝑑𝑖
′) and 𝑑𝑗 = 𝑑𝑗

′ for 𝑗 ≠ 𝑖

o reset R d, d′ : X → X, 𝑅 𝑑, 𝑑′ 𝑋 = ς𝑘𝑅𝑖(𝑑, 𝑑
′)(𝑋)

TL is a set of pairs ξ, d

o Trajectory ξ: 0, T → X describes evolution of continuous states in mode d ∈ D

o Given d ∈ D, x ∈ X, ∀t, 𝜉 t = ς𝑗 Fj xj, dj t

o 𝜉. 𝑓𝑠𝑡𝑎𝑡𝑒, 𝜉. 𝑙𝑠𝑡𝑎𝑡𝑒, 𝜉. 𝑙𝑡𝑖𝑚𝑒 the first state 𝜉(0), the last state of the trajectory 𝜉(𝑇),
and 𝜉. 𝑙𝑡𝑖𝑚𝑒 = 𝑇

Verse scenario to hybrid system cont.

V e r i f i c a t i o n a n d C e r t i f i c a t i o n S a y a n M i t r a

δ-execution of H(SC) is a sequence of m labeled trajectories α ≔ ξ0, d0 , … ,
ξm−1, dm−1

o ξ0. fstate ∈ X0

o ξi−1. lstate ∈ G(di−1, di) and ξi. fstate = R di−1, di (ξi−1. lstate), i ∈ {1,m − 1}

o ξi. ltime = δ if i ≠ m − 1 and ξm−1. 𝑙𝑡𝑖𝑚𝑒 ≤ δ, i ∈ {1,m − 1}

Reach x0, d0, Tmax : reachable states from x0 ∈ X, d0 ∈ D along an execution α defined as

∋iڂ 0,m (t∈[0,δڂ ξ
i(t), with m =

Tmax

δ

o ReachH Tmax = x0∈X0ڂ Reach (x
0, d0, Tmax)

To prove safety, we can check ReachH Tmax ∩ Unsafe = ∅

Execution and reachable states for 𝐻(𝑆𝐶)

V e r i f i c a t i o n a n d C e r t i f i c a t i o n S a y a n M i t r a

For a pair of modes d, d′, define discrete and continuous post
operators

o postCont X, d = X′ iff X′ = ,x∈𝑋ςKFi(xiڂ d, δ)

o postDisc X, d, d′ = X′ iff ∀x ∈ X, x ∈ G(d, d′) and 𝑋′ = x∈𝑋ڂ R d, d′ x

Verse constructs reachability tree Tree = ⟨V, E⟩ up to depth m
o Each vertex S, d ∈ V is a pair of a set of continuous states and a mode

o Root ⟨X0, d0⟩

o There is an edge from ⟨S, d⟩ to ⟨S′, d′⟩, iff S′ = postCont postDisc S, d, d′ , d′

Reachability tree constructed by Verse is an over-approximation
of ReachH Tmax

Reachability Tree in Verse

V e r i f i c a t i o n a n d C e r t i f i c a t i o n S a y a n M i t r a

A discrepancy function β:ℝn × ℝn × ℝ≥0 is a uniformly continuous

function such that for any pair of trajectories 𝜉1, d , 𝜉2, d ∈ TL, and any
t ∈ 𝜉1. dom⋂𝜉2. dom

o 𝜉1 t − 𝜉2 t ≤ β(𝜉1. fstate, 𝜉2. fstate, t)

o β . , . , t → 0 as𝜉1. fstate → 𝜉2. fstate

Compute postCont for input set of states X0 = Ball(x0, r) in mode d

o Obtain trajectory ξ0 starting from x0 labeled by mode d

o Obtain discrepancy function β

o An over-approximation of reachable set can be obtained by

tڂ ξ
0(t) ⊕ β x0, x0 + r, t

PostCont: Using Discrepancy Function

𝜉1(0)

𝜉2(0)

𝜉2(𝑡)

𝜉1(𝑡)

𝛽(𝜉1(0), 𝜉2(0), 𝑡)

V e r i f i c a t i o n a n d C e r t i f i c a t i o n S a y a n M i t r a
12

Learn discrepancy from data

Use a template for exponential discrepancy 𝛽 𝑥1, 𝑥2, 𝑡

𝑥1 𝑡 − 𝑥2 𝑡 ≤ 𝛽 𝑥1, 𝑥2, 𝑡 = 𝑥1 0 − 𝑥2 0 𝑒𝑎𝑡+𝑏

Taking log: ∀𝑡, ln
𝑥1 𝑡 −𝑥2 𝑡

𝑥1 0 −𝑥2 0
≤ 𝑎𝑡 + 𝑏

Find 𝑎 and 𝑏 by learning a linear separator

Theorem [CAV17]: Given the training set, the global exponential discrepancy function
that gives the tightest reach set over-approximation can be found by solving a Linear
programming (LP) problem

Proposition [CAV17]: ∀𝜖, 𝛿 > 0, if sampling number 𝑛 ≥
1

𝜖
ln

1

𝛿
, then with probability 1 −

𝛿, the algorithm finds (𝑎, 𝑏) such that 𝑒𝑟𝑟𝒟 𝑎, 𝑏 < 𝜖

ln
𝑥𝑖 𝑡 − 𝑥𝑗 𝑡

𝑥𝑖 0 − 𝑥𝑗 0

𝑡

𝑎𝑡 + 𝑏

V e r i f i c a t i o n a n d C e r t i f i c a t i o n S a y a n M i t r a

o Computed trajectory of 2-drone scenario

o Reachability analysis find potential safety
violation

o By Modifying parameters in the decision
logic, we can mitigate the safety violation

o Easily modify scenario to test more
interesting behaviors of the agents
• Further show with live demo

Result highlights

HIT: Safe Separation

z

y
x

V e r i f i c a t i o n a n d C e r t i f i c a t i o n S a y a n M i t r a

o Three cars

o Red and green cars running at 1 m/s and blue cars running at 0.5m/s

o Red car can perform lane switch when there’s another car 5m in front

o Three vehicles all have uncertain initial condition

o Safety condition: The red vehicle should be 1m away from all other vehicles.

14

Live Demo1: Lane Switch Scenario

V e r i f i c a t i o n a n d C e r t i f i c a t i o n S a y a n M i t r a

o Exact same setting as base example but with a different
Map

15

Live Demo2: Easy Modification Detect Safety Violation

V e r i f i c a t i o n a n d C e r t i f i c a t i o n S a y a n M i t r a

o Exact same setting as base example but with different
sensor model with noise

16

Live Demo3: Handle Uncertainty in Perception

V e r i f i c a t i o n a n d C e r t i f i c a t i o n S a y a n M i t r a

More Scenarios Verified by Verse

V e r i f i c a t i o n a n d C e r t i f i c a t i o n S a y a n M i t r a

o L1 Adaptive Control (L1AC) verification architecture using the Verse Library
[Song et al. ICCPS-WIP 23]

Application: Verification of L1AC

L. Song, Y. Li, S. Cheng, P. Zhao, S. Mitra, N. Hovakimyan, Verification of \mathcal{L}_1 Adaptive Control using Verse Library: A Case Study of Quadrotors, In
Proceedings of 13th IEEE International Conference on Cyber Physical Systems (ICCPS) Demo/Poster/Work-in-Progress, San Antonio, TX, 2023.

V e r i f i c a t i o n a n d C e r t i f i c a t i o n S a y a n M i t r a

o L1AC verification objectives
Formally verify the following two properties of L1AC:

• Transient performance guarantees;
• Scenario: an 18-dimensional drone model subject to rapidly changing uncertainty

• Expected outcome: L1AC’s capability for fast adaptation

• Guaranteed delay margins.
• Scenario: an 18-dimensional drone model subject to time delay in the control input

• Expected outcomes:

• L1AC preserves delay margin bounded away from zero;

• Graceful performance degradation provided by L1AC.

Application: Verification of L1AC

V e r i f i c a t i o n a n d C e r t i f i c a t i o n S a y a n M i t r a

o L1AC verification objectives
Formally verify the following two properties of L1AC:

• Transient performance guarantees;
• Scenario: an 18-dimensional drone model subject to rapidly changing uncertainty

• Expected outcome: L1AC’s capability for fast adaptation

• Guaranteed delay margins.
• Scenario: an 18-dimensional drone model subject to time delay in the control input

• Expected outcomes:

• L1AC preserves delay margin bounded away from zero;

• Graceful performance degradation provided by L1AC.

Application: Verification of L1AC

V e r i f i c a t i o n a n d C e r t i f i c a t i o n S a y a n M i t r a

o Scenario 1: transient performance verification

Application: Verification of L1AC

Verification of L1AC capability for fast adaptation

L1 off L1 on

This is the source of uncertainty;

the uncertain parameter set also evolves with time.

The drone has time-varying mass

parameter (unknown to the controller)

with prescribed (time-varying) bounds.

V e r i f i c a t i o n a n d C e r t i f i c a t i o n S a y a n M i t r a

o L1AC verification objectives
Formally verify the following two properties of L1AC:

• Transient performance guarantees;
• Scenario: an 18-dimensional drone model subject to rapidly changing uncertainty

• Expected outcome: L1AC’s capability for fast adaptation

• Guaranteed delay margins.
• Scenario: an 18-dimensional drone model subject to time delay in the control input

• Expected outcomes:

• L1AC preserves delay margin bounded away from zero;

• Graceful performance degradation provided by L1AC.

Application: Verification of L1AC

V e r i f i c a t i o n a n d C e r t i f i c a t i o n S a y a n M i t r a

o Scenario 2: delay margin verification

Control input of the drone system is subject to time delay.

Only consider the delay margin achieved by L1AC, and we implement the verification
procedure under a range of time delay amount.

Application: Verification of L1AC

V e r i f i c a t i o n a n d C e r t i f i c a t i o n S a y a n M i t r a

Application: Verification of L1AC

Delay = 20 ms Delay = 50 ms Delay = 80 ms

Delay = 100 ms Delay = 120 ms

Delay = 150 ms

V e r i f i c a t i o n a n d C e r t i f i c a t i o n S a y a n M i t r a

o Future directions:
• Verification of L1AC plus learning-enabled component;

• An example: Contraction L1AC + Gaussian Processes [Gahlawat et al. L4DC 2021]

• Verification of L1AC on systems involving switch, either on model or
controller;
• An example: learn-to-fly [Snyder et al. JGCD 2022], vehicle subject to driving

environment changes [Mao et al. ACM TCPS 2023]

• Tool/Method: deploy the mode switch feature of the Verse Library

• Verification of the controller-parameter tuning process.
• An example: Difftune+ [Cheng et al. L4DC 2023]

• Tool/Method: Postdisc + Postcont -- ‘one-step’ reachability analysis feature of Verse

Application: Verification of L1AC

V e r i f i c a t i o n a n d C e r t i f i c a t i o n S a y a n M i t r a

• Application to DNN-based control [Puthumanaillam, Ornik,
et al.]

• Application to RL-based air-traffic management [Peng Wei,
GWU, ongoing]

• Parallel Verse [Zhu, et al.]

Other applications

V e r i f i c a t i o n a n d C e r t i f i c a t i o n S a y a n M i t r a

o Verse is designed to make hybrid system verification accessible
• Python DL, nondeterministic agents, scenarios, sensors, asserts, OpenDrive maps

o Under the hood Verse uses tree-based reachability, sensitivity
analysis for postCont
• Can handle uncertainty in initial states, transitions, parameters

• Plug-in Post computations DryVR, NeuReach, Monotonicity, …

o In the future
• Incremental verification, parallelization

• verifying DRL controllers

o We welcome your feedback!

Summary

V e r i f i c a t i o n a n d C e r t i f i c a t i o n S a y a n M i t r a

References

o Fan, C., Qi, B., Mitra, S., Viswanathan, M. (2017). DRYVR: Data-Driven Verification and Compositional Reasoning for Automotive
Systems. In: Majumdar, R., Kunčak, V. (eds) Computer Aided Verification. CAV 2017

o Sun, D., Mitra, S. (2022). NeuReach: Learning Reachability Functions from Simulations. In: Fisman, D., Rosu, G. (eds) Tools and
Algorithms for the Construction and Analysis of Systems. TACAS 2022

o Sibai, H., Li, Y., Mitra, S. (2021). SceneChecker: Boosting Scenario Verification Using Symmetry Abstractions. In: Silva, A., Leino, K.R.M.
(eds) Computer Aided Verification. CAV 2021

o L. Song, Y. Li, S. Cheng, P. Zhao, S. Mitra, N. Hovakimyan, Verification of \mathcal{L}_1 Adaptive Control using Verse Library: A Case
Study of Quadrotors, In Proceedings of 13th IEEE International Conference on Cyber Physical Systems (ICCPS) Demo/Poster/Work-in-
Progress, San Antonio, TX, 2023.

o A. Gahlawat, A. Lakshmanan, L. Song, A. Patterson, Z. Wu, N. Hovakimyan, EA. Theodorou. Contraction L1-Adaptive Control using
Gaussian Processes. In Learning for Dynamics and Control 2021 May 29 (pp. 1027-1040). PMLR.

o S. Snyder, P. Zhao, N. Hovakimyan. L1 Adaptive Control with Switched Reference Models: Application to Learn-to-Fly. Journal of
Guidance, Control, and Dynamics. 2022 Dec;45(12):2229-42.

o Y. Mao, Y. Gu, N. Hovakimyan, L. Sha, P. Voulgaris. Sℒ1-Simplex: Safe Velocity Regulation of Self-Driving Vehicles in Dynamic and
Unforeseen Environments. ACM Transactions on Cyber-Physical Systems. 2023 Feb 20;7(1):1-24.

o S. Cheng, L. Song, M. Kim, S. Wang, N. Hovakimyan. DiffTune^+ : Hyperparameter-Free Auto-Tuning using Auto-Differentiation.
accepted to Learning for Dynamics and Control 2023 (to appear).

V e r i f i c a t i o n a n d C e r t i f i c a t i o n Y a n g g e L i

Thank You Very Much!

	Slide 1
	Slide 2
	Slide 3
	Slide 4: Creating scenarios in Verse --- quick and easy
	Slide 5: Writing Decision Logic
	Slide 6
	Slide 7: Verse scenario to hybrid system
	Slide 8: Verse scenario to hybrid system cont.
	Slide 9: Execution and reachable states for cap H open paren cap S cap C close paren
	Slide 10: Reachability Tree in Verse
	Slide 11: PostCont: Using Discrepancy Function
	Slide 12: Learn discrepancy from data
	Slide 13: Result highlights
	Slide 14: Live Demo1: Lane Switch Scenario
	Slide 15: Live Demo2: Easy Modification Detect Safety Violation
	Slide 16: Live Demo3: Handle Uncertainty in Perception
	Slide 17: More Scenarios Verified by Verse
	Slide 18: Application: Verification of L1AC
	Slide 19: Application: Verification of L1AC
	Slide 20: Application: Verification of L1AC
	Slide 21: Application: Verification of L1AC
	Slide 22: Application: Verification of L1AC
	Slide 23: Application: Verification of L1AC
	Slide 24: Application: Verification of L1AC
	Slide 25: Application: Verification of L1AC
	Slide 26: Other applications
	Slide 27: Summary
	Slide 28: References
	Slide 29: Thank You Very Much!

