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Outline

Introduction to Verse verification tool
https://github.com/AutoVerse-ai/Verse-library
• Quadrotor example

• Demo

Background theory: Data-driven verification

• Reachability and sensitivity

Applications

• L1 Adaptive control [Lin Song et al., ICCPS WIP ’23]

• DNN control [Puthumanaillam, Ornik, et al.]

• RL air-traffic management [Peng Wei, GWU, ongoing]

• Parallel Verse [Zhu, et al.]
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https://github.com/AutoVerse-ai/Verse-library


Input
System + Requirements
Multi-agent hybrid scenarios + Invariance / safety 

Output
Counter-example or 
Proof that all behaviors of the System meet Requirements

Basic Verse Approach
Probabilistic sensitivity analysis + 
Deterministic reachability analysis 

Advanced Approaches
Parallelized verification
Incremental verification
Verification with neural network controllers

Verification problem and the Verse tool
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Drones flying along three parallel vertically 
separated straight tracks

Scenario in Verse defined by a set of agents, a 
map, and a sensor

Maps define sequences of waypoints or 
motion primitives

Sensors specify information available to one 
agent about other agents

Agent: Decision logic + Dynamics

o 6D model + Bang-bang controller

o 18D model + L1 controller

Creating scenarios in Verse --- quick and easy
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Writing Decision Logic
Informal logic: “Nondeterministically
switch to track above or below if too 
close to any other drone in the same 
track”

Decision Logic (DL) modifies agent’s 
mode written in Python

If exists multiple possible transitions, 
both will be explored 

Using any and all to quantify over other 
agents in the scenario

DL supports user defined functions

Safety specified using python asserts (no 
need to learn new logics) 
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Verse under the hood

6
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Learning sensitivity from 

data [Fan CAV17]

Reachability, 

composition,  

fixpoints

Learning reachability 

functions [Sun TACAS22]

Exploiting symmetries in 

dynamics 

[Sibai CAV21, TACAS19]

transition structure 

extracted

+

Black-box 

physics 

simulator

Transition logic
Executable access 

to mode dynamics
Scenario

Decision logic

Multi-agent interactions Core hybrid verification algorithms
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Verse scenario to hybrid system

Consider a scenario SC with k agents,

Agent i has:

o Continuous state space Xi

o Mode space Di

o Guard Gi and reset Ri extracted from Decision Logic. For a pair of modes d, d′ ∈ Di
• Gi d, d

′ ⊆ ςj Xj defines transition condition

• R𝑖 d, d
′ :ςj Xj → Xi defines change of continuous state after transition

o Flow function Fi: Xi × D × ℝ≥0 → Xi
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Hybrid system H SC = ⟨X, X0, D, d0, G, R, TL⟩ from composition of agents

Continuous state space X = ςkXi
o An element x ∈ X is called a state; X0: set of initial states

Mode space D = ςkDi

o An element d ∈ D is called a mode. 𝑑0: an initial mode

For a pair of modes d, d′ ∈ D

o guard G d, d′ ⊆ X, x ∈ 𝐺(𝑑, 𝑑′) iff x ∈ 𝐺𝑖(𝑑𝑖, 𝑑𝑖
′) and 𝑑𝑗 = 𝑑𝑗

′ for 𝑗 ≠ 𝑖

o reset R d, d′ : X → X, 𝑅 𝑑, 𝑑′ 𝑋 = ς𝑘𝑅𝑖(𝑑, 𝑑
′)(𝑋)

TL is a set of pairs ξ, d

o Trajectory ξ: 0, T → X describes evolution of continuous states in mode d ∈ D

o Given d ∈ D, x ∈ X, ∀t, 𝜉 t = ς𝑗 Fj xj, dj t

o 𝜉. 𝑓𝑠𝑡𝑎𝑡𝑒, 𝜉. 𝑙𝑠𝑡𝑎𝑡𝑒, 𝜉. 𝑙𝑡𝑖𝑚𝑒 the first state 𝜉(0), the last state of the trajectory 𝜉(𝑇), 
and 𝜉. 𝑙𝑡𝑖𝑚𝑒 = 𝑇

Verse scenario to hybrid system cont.
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δ-execution of H(SC) is a sequence of m labeled trajectories α ≔ ξ0, d0 , … ,
ξm−1, dm−1

o ξ0. fstate ∈ X0

o ξi−1. lstate ∈ G(di−1, di) and ξi. fstate = R di−1, di (ξi−1. lstate), i ∈ {1,m − 1}

o ξi. ltime = δ if i ≠ m − 1 and ξm−1. 𝑙𝑡𝑖𝑚𝑒 ≤ δ, i ∈ {1,m − 1}

Reach x0, d0, Tmax : reachable states from x0 ∈ X, d0 ∈ D along an execution α defined as 

∋iڂ 0,m (t∈[0,δڂ ξ
i(t), with m =

Tmax

δ

o ReachH Tmax = x0∈X0ڂ Reach (x
0, d0, Tmax)

To prove safety, we can check ReachH Tmax ∩ Unsafe = ∅

Execution and reachable states for 𝐻(𝑆𝐶)
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For a pair of modes d, d′, define discrete and continuous post 
operators

o postCont X, d = X′ iff X′ = ,x∈𝑋ςKFi(xiڂ d, δ)

o postDisc X, d, d′ = X′ iff ∀x ∈ X, x ∈ G(d, d′) and 𝑋′ = x∈𝑋ڂ R d, d′ x

Verse constructs reachability tree Tree = ⟨V, E⟩ up to depth m
o Each vertex S, d ∈ V is a pair of a set of continuous states and a mode

o Root  ⟨X0, d0⟩

o There is an edge from ⟨S, d⟩ to ⟨S′, d′⟩, iff S′ = postCont postDisc S, d, d′ , d′

Reachability tree constructed by Verse is an over-approximation 
of ReachH Tmax

Reachability Tree in Verse
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A discrepancy function β:ℝn × ℝn × ℝ≥0 is a uniformly continuous 

function such that for any pair of trajectories 𝜉1, d , 𝜉2, d ∈ TL, and any 
t ∈ 𝜉1. dom⋂𝜉2. dom

o 𝜉1 t − 𝜉2 t ≤ β(𝜉1. fstate, 𝜉2. fstate, t)

o β . , . , t → 0 as𝜉1. fstate → 𝜉2. fstate

Compute postCont for input set of states X0 = Ball(x0, r) in mode d

o Obtain trajectory ξ0 starting from x0 labeled by mode d

o Obtain discrepancy function β

o An over-approximation of reachable set can be obtained by 

tڂ ξ
0(t) ⊕ β x0, x0 + r, t

PostCont: Using Discrepancy Function

𝜉1(0)

𝜉2(0)

𝜉2(𝑡)

𝜉1(𝑡)

𝛽(𝜉1(0), 𝜉2(0), 𝑡)
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Learn discrepancy from data

Use a template for exponential discrepancy 𝛽 𝑥1, 𝑥2, 𝑡

𝑥1 𝑡 − 𝑥2 𝑡 ≤ 𝛽 𝑥1, 𝑥2, 𝑡 = 𝑥1 0 − 𝑥2 0 𝑒𝑎𝑡+𝑏

Taking log:  ∀𝑡, ln
𝑥1 𝑡 −𝑥2 𝑡

𝑥1 0 −𝑥2 0
≤ 𝑎𝑡 + 𝑏

Find 𝑎 and 𝑏 by learning a linear separator

Theorem [CAV17]: Given the training set, the global exponential discrepancy function
that gives the tightest reach set over-approximation can be found by solving a Linear
programming (LP) problem

Proposition [CAV17]: ∀𝜖, 𝛿 > 0, if sampling number 𝑛 ≥
1

𝜖
ln

1

𝛿
, then with probability 1 −

𝛿, the algorithm finds (𝑎, 𝑏) such that 𝑒𝑟𝑟𝒟 𝑎, 𝑏 < 𝜖

ln
𝑥𝑖 𝑡 − 𝑥𝑗 𝑡

𝑥𝑖 0 − 𝑥𝑗 0

𝑡

𝑎𝑡 + 𝑏



V e r i f i c a t i o n  a n d  C e r t i f i c a t i o n S a y a n  M i t r a

o Computed trajectory of 2-drone scenario

o Reachability analysis find potential safety
violation

o By Modifying parameters in the decision
logic, we can mitigate the safety violation

o Easily modify scenario to test more
interesting behaviors of the agents
• Further show with live demo

Result highlights

HIT: Safe Separation
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o Three cars

o Red and green cars running at 1 m/s and blue cars running at 0.5m/s

o Red car can perform lane switch when there’s another car 5m in front

o Three vehicles all have uncertain initial condition

o Safety condition: The red vehicle should be 1m away from all other vehicles.

14

Live Demo1: Lane Switch Scenario
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o Exact same setting as base example but with a different 
Map

15

Live Demo2: Easy Modification Detect Safety Violation



V e r i f i c a t i o n  a n d  C e r t i f i c a t i o n S a y a n  M i t r a

o Exact same setting as base example  but with different 
sensor model with noise

16

Live Demo3: Handle Uncertainty in Perception
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More Scenarios Verified by Verse



V e r i f i c a t i o n  a n d  C e r t i f i c a t i o n S a y a n  M i t r a

o L1 Adaptive Control (L1AC) verification architecture using the Verse Library 
[Song et al. ICCPS-WIP 23]

Application: Verification of L1AC

L. Song, Y. Li, S. Cheng, P. Zhao, S. Mitra, N. Hovakimyan, Verification of $\mathcal{L}_1$ Adaptive Control using Verse Library: A Case Study of Quadrotors, In 
Proceedings of 13th IEEE International Conference on Cyber Physical Systems (ICCPS) Demo/Poster/Work-in-Progress, San Antonio, TX, 2023.
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o L1AC verification objectives
Formally verify the following two properties of L1AC:

• Transient performance guarantees;
• Scenario: an 18-dimensional drone model subject to rapidly changing uncertainty

• Expected outcome: L1AC’s capability for fast adaptation

• Guaranteed delay margins.
• Scenario: an 18-dimensional drone model subject to time delay in the control input

• Expected outcomes: 

• L1AC preserves delay margin bounded away from zero;

• Graceful performance degradation provided by L1AC.

Application: Verification of L1AC
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o Scenario 1: transient performance verification

Application: Verification of L1AC

Verification of L1AC capability for fast adaptation

L1 off L1 on

This is the source of uncertainty; 

the uncertain parameter set also evolves with time.

The drone has time-varying mass 

parameter (unknown to the controller) 

with prescribed (time-varying) bounds.
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o Scenario 2: delay margin verification

Control input of the drone system is subject to time delay.

Only consider the delay margin achieved by L1AC, and we implement the verification 
procedure under a range of time delay amount.

Application: Verification of L1AC
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Application: Verification of L1AC

Delay = 20 ms Delay = 50 ms Delay = 80 ms

Delay = 100 ms Delay = 120 ms

Delay = 150 ms
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o Future directions:
• Verification of L1AC plus learning-enabled component;

• An example: Contraction L1AC + Gaussian Processes [Gahlawat et al. L4DC 2021]

• Verification of L1AC on systems involving switch, either on model or 
controller;
• An example: learn-to-fly [Snyder et al. JGCD 2022], vehicle subject to driving 

environment changes [Mao et al. ACM TCPS 2023]

• Tool/Method: deploy the mode switch feature of the Verse Library

• Verification of the controller-parameter tuning process.
• An example: Difftune+ [Cheng et al. L4DC 2023]

• Tool/Method: Postdisc + Postcont -- ‘one-step’ reachability analysis feature of Verse

Application: Verification of L1AC
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• Application to DNN-based control [Puthumanaillam, Ornik, 
et al.] 

• Application to RL-based air-traffic management [Peng Wei, 
GWU, ongoing] 

• Parallel Verse [Zhu, et al.]

Other applications
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o Verse is designed to make hybrid system verification accessible
• Python DL, nondeterministic agents, scenarios, sensors, asserts, OpenDrive maps

o Under the hood Verse uses tree-based reachability, sensitivity 
analysis for postCont
• Can handle uncertainty in initial states, transitions, parameters 

• Plug-in Post computations DryVR, NeuReach, Monotonicity, …

o In the future
• Incremental verification, parallelization

• verifying DRL controllers

o We welcome your feedback!

Summary
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Thank You Very Much!
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