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Introduction

The Simulation Tool

Updates:

. MATLAB Simulink Integration for NASA's vehicle simulation model.

. 2D path planning with Lidar sensor.

Use Cases of the Game Environment and Future Works
. Adversarial Image Perturbations Against Autonomous Vehicles*
. Robust Control in the UAV Object Detection Autonomy Pipeline

. Future Works on the Simulator

*Yoon, Hyung-Jin, Hamidreza Jafarnejadsani, and Petros Voulgaris. "Learning When to Use Adaptive Adversarial Image Perturbations
against Autonomous Vehicles." IEEE Robotics and Automation Letters (RA-L) Accepted.
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ENGINEERING FRAMEWORK TO BE TESTED
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PHOTO REALISTIC SIMULATORS IN AUTONOMOUS CAR

Photo Realistic Simulation
using VR/Game engine has
become an industry
standard for developing
and testing autonomous
driving software stacks.

Therefore, we aim to
implement the

Learning-Enabled
Autonomy Stack (TC1)

with VR/game
environment.




SIMULATION ENVIRONMENT 3/24

Learning-Enabled Autonomy Stack
(TC1) will be tested in simulation
for landing and taking-off in
cluttered environments (see the
left) using perception, planning,
and control methods.

Therefore, we are using an urban

Source: Back to the Future Part Il (1989) environment developed by
CARLA.

Urban Air Mobility (UAM) Landing on Street
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DISCUSSION

How far realistic and detailed simulation do we need?

Figure 1.3 Deterministic vs({ stochastic optimization

Deterministic Stochastic
Models System of equations Complex functions, numerical
simulations,)physical systems
Objective Minimize cost Policy evaluation, risk mea- See the erEIy avallable
sures . .
: * - (community license?)
Searching for Real-valued vectors Functions (policies) . .
Goal Finding optimal decision Finding optimal policies VR/Game prOIECt n
What is hard Designing algorithms Modeling the next Sllde'

From lecture note (or a book draft) titled as “OPTIMIZATION UNDER UNCERTAINTY A unified framework (Draft)” by Warren B. Powell
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The Simulation Tool



MODULAR IMPLEMENTATION DIAGRAM

Unreal Game Engine Vehicle :
(CARLA / AIRSIM) State GAZEBO Sim
« Photo Realistic * Vehicle Dynamic
Camera Simulation — Simulation
. LIDAR Sensor (Middleware) (ODE solver)
« Cluttered 100Hz
' 10Hz
Environment Simulation
Camera =
frames, Software
Point Cloud
High Level o Auto Pilot
* Perception  PX4 or ArduPilot
* Planner To * Vehicle Control
10Hz 100Hz

https://github.com/AutoRally/autorally/blob/melodic-devel/autorally _core/CMakeL.ists.txt https://pxA4.iol



https://px4.io/
https://github.com/AutoRally/autorally/blob/melodic-devel/autorally_core/CMakeLists.txt

VTOL SIM - PX4 AUTOPILOT - UNREAL GAME ENGINE

Gazebo pygame window

Il Real Time Factor:
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CUSTOMIZING THE VTOL VEHICLE

| T 1 IEX A I

10/24

This customized vehicle has 4
more propellers for vertical
take-off.

The Lift+Cruise by NASA is a full-
scale, VTOL, distributed propulsion
aircraft concept with eight fixed-pitch
lifting rotors and one variable-pitch,
rear-mounted pusher propeller.




COMMERCIAL VTOL SYSTEMS WITH PX4 AUTOPILOT SW

VOLY M20 by Volansi

https://www.deltaquad.com/

Wingspan 3.8 m

Wingspan 2.4 m

VOLY M20 Specification
Body length: 2.5m
Wingspan: 3.8m
Maximum takeoff weight: 50kg
Maximum payload: 15kg
Flying radius: 200-400km
Maximum speed: 130km/h
Maximum oil load: 12L
Lift limit: 4000m
Maximum wind resistance: 12m/s (6 wind)

PX4 Autopilot S/W is used for
commercial VTOL systems that
have 2 to 4 meters wingspans.



https://www.deltaquad.com/

Updates



MATLAB SIMULATION MODEL INTEGRATION
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MATLAB SIMULATION MODEL INTEGRATION

Sel
FPace
Aulo
1 seclsec [vaw_rate_cmad]
[vel_tarward B+, 1 P S [] s AN
[vel_up,_down] [linear_x| h
ivel_lef_right] » ;++ | :: s geometry_msgsTwist Bus
2 [v]
[wed_baft_right] w3 @—b = Linear. X
= Aes
[wel_forwvard] [linear_z]
W 3 [z] ¥l ‘= Linear.y
=
Buttons
Translation

[roll_rate_crmd] 1z] = Linear.Z Bius e E-b dmﬁ )

imaltlab/posa

[piteh_rate_crmd]

[yaw_rata_crmd] i yaw p{ [yaw] -—b = Angular.Z
. [angluar_z]
v - [linear_x] m = Angular ¥
[pitch_rate cmd] L *, L 2 p— [pitch]
| 24 [linear_y]
<
IsMew langular_x] [rall] = Angular ¥
: [linear_z)
A Ly [rodl_rate_cmd] Lg K] <] — m
Jdisplay_node/control_cmd
. |angular_x] [angular_y] Rotation
[angular_y]
<o :

L i

We are preparing to
use NASA’s Simulink
Model.




SENSOR CONFIGURATION

Rough Overview of Helicopter

* Primary forward looking primary
camera the pilot uses to look
ahead

* Also has forward looking lidar
and radar

* Multiple situational awareness
cameras for looking around

* Dual INS solution that provide
position and orientation

We mimicked SNC’s sensor configuration.







Use Cases of the Game Environment and
Future Works



Adversarial Image Perturbations Against Autonomous Vehicles

Adversarial Machine Learning (Adv.ML)

“panda” “gibbon”

lance Q0 3 onfider

2/ ./ 70 CC del

The deep learning classifier shows vulnerability to mere
noise. The deep learning model can have a weak point in
terms of performance, depending on the class of the object.

Adv. ML aims to find
weakness of ML tool to
make the ML tool
robust.

Kurakin, Alexey, lan Goodfellow, and Samy Bengio. "Adversarial machine learning at scale.”

arXiv preprint arXiv:1611.01236 (2016).



Adversarial Image Perturbations Against Autonomous Vehicles

We propose a stochastic optimization framework that monitors the attacker's capability of
generating the adversarial perturbations.

Adversarial Fabricated Erased
Patch BBox Original
BBox oot IR

Stochastic Binary Decision

[,~P;[loss|state, attack; 6]

lo~Py[loss|state; 6]

B - ___ if l; <lythenuse attack

v else do not use attack

Py Py
proficient incapable

Use image attack — image attack loss — Do not use image attack

Existing Method* Proposed Adaptive Method

*Jia, Yunhan, et al. "Fooling Detection Alone is Not Enough: First Adversarial Attack against Multiple Object
Tracking." International Conference on Learning Representations (ICLR). 2020.



Adversarial Image Perturbations Against Autonomous Vehicles

The proposed framework is implemented using ROS for online communication and
simultaneous running of the following modules.

target

attacked image
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Learning When to Use
Adaptive Adversarial Image Perturbations
against Autonomous Vehicles

|.Real Time Image Attack with a Simulation
ll.Learning Image Attack against an Indoor drone



Adversarial Image Perturbations Against Autonomous Vehicles 20/24




Robust Control in the UAV Object Detection Autonomy Pipeline

N perception
errors
4 e
N idealized [
Y system and ) w
K le— perception .

E

We quantify robustness against the
error and the performance using

‘7_[00 (Gxe) vS. ‘7-[00 (G.X'W)

*Dean, Sarah, et al. "Robust guarantees for perception-based
control." Learning for Dynamics and Control. PMLR, 2020.



Robust Control in the UAV Object Detection Autonomy Pipeline

(a) Prediction for fully visible (b) Prediction for heavily oc-
pedestrian. cluded pedestrian.

Fig. 4 — Comparing aleatoric uncertainties for| occluded|and
fully visible pedestrians. Both Predictions were produced by
prior 3. Note the drastically increased variance in width and
height for the heavily occluded pedestrian.

There exist works
on the estimation
of uncertainty in
object detection.

*Kraus, Florian, and Klaus Dietmayer. "Uncertainty estimation in one-stage object detection." 2019 IEEE intelligent

transportation systems conference (ITSC). IEEE, 20109.




Robust Control in the UAV Object Detection Autonomy Pipeline

Weather and Light
Uncertainty Quantification fSimulation in Unreal Engine

|
perception
errors We aim to implement
the common sense that
X e we need to be cautious
idealized <+«—@ when the environment
\ 4 y system and |« W is uncertain using the
erception [«—— switching logic.
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*We plan to present this idea in AIAA SciTech Invited Session.



FUTURE WORKS ON THE SIMULATOR

 We need to further organize and clean the GitHub repository at

* Replace the flying car with a better-looking VTOL in the Unreal Engine such as

e Devise a sensor fusion algorithm to integrate the Lidar sensor with the occupancy
grid, the camera sensor with the object detection.

* Devise an estimation method to predict and track the moving obstacle in the
environment.


https://github.com/stargaze221/RRAAA-ULI
http://www.turbosquid.com/

Learning Autonomy and Control Systems Lab

Prof. Petros Voulgaris
MECHANICAL ENGINEERING

Petros Voulga‘ris

Hyung-Jin Yoon Yichuan Li Antonio Castaino Caleb Patton Jessica Peterson
(Postdoc) (Postdoc) (Grad. Student) (Grad. Student) (Upcoming Grad.)
* Decision making e Multiagent e UAV Control * Machine learning e UAV - Human Pilot
under uncertainties optimization for * VR simulation * VR simulation collaboration
* Autonomous control and * UAV test and
System estimation verification




Learning Autonomy and Control Systems Lab

Prof. Petros Voulgaris
MECHANICAL ENGINEERING

Thank you

University of Nevada, Reno




Systems Integration & Field Deployment Verification

AVIATE Seminars
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Assistant Professor
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Small-scale Aerial System w/ Multi-Day Field Deployment Autonomy

Khadas VIM3: 4x 2.2Ghz Cortex-A73, 2x 1.8Ghz Cortex-A53, 5.0 TOPS NPU

u-Blox Neo-M9N mRo PixRacer Pro
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Robust and Resilient Autonomy for Advanced Air Mobility ST
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Automation 2023
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Mid-scale Aerial System Development w/ Amphibious Capabilities

Firefly ROC-RK3588S-PC: 4x 2.4Ghz Cortex-A76, 4x 1.8Ghz Cortex-A55, 6.0 TOPS NPU
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Robust and Resilient Autonomy for Advanced Air Mobility



Accepted at IEEE International Conference on Unmanned Aircraft Systems 2023
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Heavy-Payload commercial Multicopter

Intel NUC 11 PAH i7: 4x 2.8Ghz i7-1165G7

DJI GPS

\1/: i DJI Autopilot

Intel Realsense T265

WAL IR

L)

Robust and Resilient Autonomy for Advanced Air Mobility — L



Initial Field Testing with Heavy-Pa al Multicopter
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Educational Content & Digital Twin Simulations

https://www.roboticworkerslab.com/education/courses

‘9, Robotic Workers Lab

Courses

Aerial Robotics
./, + (Robotics)

Offeredas:  CS-491/691

https://github.com/robowaork/aerial_robotics
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Robust and Resilient Autonomy for Advanced Air Mobility
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https://www.roboticworkerslab.com/education/courses
https://github.com/robowork/aerial_robotics
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